Spaces:
Running
Running
File size: 14,402 Bytes
c3e032d a61fff3 95da1db 17a4a75 04ba508 c3e032d 95da1db c3e032d 2c7d451 95da1db 2c7d451 95da1db 2c7d451 95da1db 2c7d451 95da1db 2c7d451 95da1db 2c7d451 95da1db 2c7d451 95da1db c3e032d 2c7d451 04ba508 c3e032d 17a4a75 c3e032d 52a6f34 17a4a75 52a6f34 17a4a75 52a6f34 17a4a75 52a6f34 17a4a75 52a6f34 17a4a75 52a6f34 2c7d451 c3e032d 04ba508 a61fff3 04ba508 a61fff3 2d4a111 a61fff3 04ba508 2d4a111 95da1db 2c7d451 95da1db 2c7d451 2d4a111 a61fff3 04ba508 c3e032d a61fff3 c3e032d a61fff3 c3e032d 04ba508 c3e032d 04ba508 c3e032d 04ba508 c3e032d a61fff3 c3e032d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 |
import gradio as gr
import threading
import os
import shutil
import tempfile
import time
from util import process_image_edit, get_country_info_safe, get_location_info_safe, contains_chinese
from nfsw import NSFWDetector
# 配置参数
NSFW_TIME_WINDOW = 5 # 时间窗口:5分钟
NSFW_LIMIT = 6 # 限制次数:6次
IP_Dict = {}
NSFW_Dict = {} # 记录每个IP的NSFW违规次数
NSFW_Time_Dict = {} # 记录每个IP在特定时间窗口的NSFW检测次数,键格式: "ip_timestamp"
def get_current_time_window():
"""
获取当前的整点时间窗口
Returns:
tuple: (窗口开始时间戳, 窗口结束时间戳)
"""
current_time = time.time()
# 获取当前时间的分钟数
current_struct = time.localtime(current_time)
current_minute = current_struct.tm_min
# 计算当前5分钟时间窗口的开始分钟
window_start_minute = (current_minute // NSFW_TIME_WINDOW) * NSFW_TIME_WINDOW
# 构建窗口开始时间
window_start_struct = time.struct_time((
current_struct.tm_year, current_struct.tm_mon, current_struct.tm_mday,
current_struct.tm_hour, window_start_minute, 0,
current_struct.tm_wday, current_struct.tm_yday, current_struct.tm_isdst
))
window_start_time = time.mktime(window_start_struct)
window_end_time = window_start_time + (NSFW_TIME_WINDOW * 60)
return window_start_time, window_end_time
def check_nsfw_rate_limit(client_ip):
"""
检查IP的NSFW检测频率限制(基于整点时间窗口)
Args:
client_ip (str): 客户端IP地址
Returns:
tuple: (是否超过限制, 剩余等待时间)
"""
current_time = time.time()
window_start_time, window_end_time = get_current_time_window()
# 清理不在当前时间窗口的记录
current_window_key = f"{client_ip}_{int(window_start_time)}"
# 如果没有当前窗口的记录,创建新的
if current_window_key not in NSFW_Time_Dict:
NSFW_Time_Dict[current_window_key] = 0
# 清理旧的窗口记录(保持内存清洁)
keys_to_remove = []
for key in NSFW_Time_Dict:
if key.startswith(client_ip + "_"):
window_time = int(key.split("_")[1])
if window_time < window_start_time:
keys_to_remove.append(key)
for key in keys_to_remove:
del NSFW_Time_Dict[key]
# 检查当前窗口是否超过限制
if NSFW_Time_Dict[current_window_key] >= NSFW_LIMIT:
# 计算到下一个时间窗口的等待时间
wait_time = window_end_time - current_time
return True, max(0, wait_time)
return False, 0
def record_nsfw_detection(client_ip):
"""
记录IP的NSFW检测时间(基于整点时间窗口)
Args:
client_ip (str): 客户端IP地址
"""
window_start_time, _ = get_current_time_window()
current_window_key = f"{client_ip}_{int(window_start_time)}"
# 增加当前窗口的计数
if current_window_key not in NSFW_Time_Dict:
NSFW_Time_Dict[current_window_key] = 0
NSFW_Time_Dict[current_window_key] += 1
# 记录到NSFW_Dict中(兼容现有逻辑)
if client_ip not in NSFW_Dict:
NSFW_Dict[client_ip] = 0
NSFW_Dict[client_ip] += 1
def get_current_window_info(client_ip):
"""
获取当前窗口的统计信息(用于调试)
Args:
client_ip (str): 客户端IP地址
Returns:
dict: 当前窗口的统计信息
"""
window_start_time, window_end_time = get_current_time_window()
current_window_key = f"{client_ip}_{int(window_start_time)}"
current_count = NSFW_Time_Dict.get(current_window_key, 0)
# 格式化时间显示
start_time_str = time.strftime("%H:%M:%S", time.localtime(window_start_time))
end_time_str = time.strftime("%H:%M:%S", time.localtime(window_end_time))
return {
"window_start": start_time_str,
"window_end": end_time_str,
"current_count": current_count,
"limit": NSFW_LIMIT,
"window_key": current_window_key
}
# 初始化NSFW检测器(从Hugging Face下载)
try:
nsfw_detector = NSFWDetector() # 自动从Hugging Face下载falconsai_yolov9_nsfw_model_quantized.pt
print("✅ NSFW检测器初始化成功")
except Exception as e:
print(f"❌ NSFW检测器初始化失败: {e}")
nsfw_detector = None
def edit_image_interface(input_image, prompt, request: gr.Request, progress=gr.Progress()):
"""
Interface function for processing image editing
"""
# 提取用户IP
client_ip = request.client.host
x_forwarded_for = dict(request.headers).get('x-forwarded-for')
if x_forwarded_for:
client_ip = x_forwarded_for
if client_ip not in IP_Dict:
IP_Dict[client_ip] = 0
IP_Dict[client_ip] += 1
# 获取IP属地信息
country_info = get_country_info_safe(client_ip)
location_info = get_location_info_safe(client_ip)
# # 检查IP是否因NSFW违规过多而被屏蔽 3
# if client_ip in NSFW_Dict and NSFW_Dict[client_ip] >= 5:
# print(f"❌ IP blocked due to excessive NSFW violations - IP: {client_ip}({country_info}), violations: {NSFW_Dict[client_ip]}")
# # 检查是否需要特殊处理(中文prompt或中国IP)
# has_chinese = contains_chinese(prompt.strip()) if prompt else False
# is_china_ip = location_info.get("country", "").lower() == "中国"
# if has_chinese or is_china_ip:
# # 构建特殊警告信息
# prov = location_info.get("prov", "未知省份")
# city = location_info.get("city", "未知城市")
# isp = location_info.get("isp", "Unknown")
# # 处理城市名称
# city_name = city.replace("市", "") if city != "未知城市" else "当地"
# # 处理ISP名称,去掉"中国"前缀
# isp_name = isp.replace("中国", "") if isp != "Unknown" else "未知"
# warning_msg = f"您的ip地址为{client_ip},地点为{prov}-{city},您的网络服务商为{isp_name},检测到您目前正在浏览,制作淫秽内容,已经上报给 {city_name}市公安局,已加急处理,请耐心等待警察上门调查"
# return None, f"❌ {warning_msg}"
# else:
# return None, f"❌ Your ip {client_ip}, your region has been blocked for too much nsfw content"
if input_image is None:
return None, "Please upload an image first"
if not prompt or prompt.strip() == "":
return None, "Please enter editing prompt"
# 检查prompt长度是否大于3个字符
if len(prompt.strip()) <= 3:
return None, "❌ Editing prompt must be more than 3 characters"
# 检查图片是否包含NSFW内容
nsfw_result = None
if nsfw_detector is not None and input_image is not None:
try:
# 直接使用PIL Image对象进行检测,避免文件路径问题
nsfw_result = nsfw_detector.predict_pil_label_only(input_image)
if nsfw_result.lower() == "nsfw":
print(f"🔍 NSFW检测结果: ❌❌❌ {nsfw_result} - IP: {client_ip}({country_info})")
# 检查NSFW频率限制
is_rate_limited, wait_time = check_nsfw_rate_limit(client_ip)
if is_rate_limited:
# 超过频率限制,显示等待提示并阻止继续
wait_minutes = int(wait_time / 60) + 1 # 向上取整到分钟
window_info = get_current_window_info(client_ip)
print(f"⚠️ NSFW频率限制 - IP: {client_ip}({country_info})")
print(f" 时间窗口: {window_info['window_start']} - {window_info['window_end']}")
print(f" 当前计数: {window_info['current_count']}/{NSFW_LIMIT}, 需要等待 {wait_minutes} 分钟")
return None, f"❌ Please wait {wait_minutes} minutes before generating again"
else:
# 未超过频率限制,记录此次检测但允许继续处理
record_nsfw_detection(client_ip)
window_info = get_current_window_info(client_ip)
# print(f"🔍 NSFW检测记录 - IP: {client_ip}({country_info})")
# print(f" 时间窗口: {window_info['window_start']} - {window_info['window_end']}")
# print(f" 当前计数: {window_info['current_count']}/{NSFW_LIMIT}, 允许继续处理")
# 不return,允许继续处理图片编辑
else:
print(f"🔍 NSFW检测结果: ✅✅✅ {nsfw_result} - IP: {client_ip}({country_info})")
except Exception as e:
print(f"⚠️ NSFW检测失败: {e}")
# 检测失败时允许继续处理
if IP_Dict[client_ip]>10 and country_info.lower() in ["印度", "巴基斯坦"]:
print(f"❌ Content not allowed - IP: {client_ip}({country_info}), count: {IP_Dict[client_ip]}, prompt: {prompt.strip()}")
return None, "❌ Content not allowed. Please modify your prompt"
# if IP_Dict[client_ip]>18 and country_info.lower() in ["中国"]:
# print(f"❌ Content not allowed - IP: {client_ip}({country_info}), count: {IP_Dict[client_ip]}, prompt: {prompt.strip()}")
# return None, "❌ Content not allowed. Please modify your prompt"
# if client_ip.lower() in ["221.194.171.230", "101.126.56.37", "101.126.56.44"]:
# print(f"❌ Content not allowed - IP: {client_ip}({country_info}), count: {IP_Dict[client_ip]}, prompt: {prompt.strip()}")
# return None, "❌ Content not allowed. Please modify your prompt"
result_url = None
status_message = ""
def progress_callback(message):
nonlocal status_message
status_message = message
progress(0.5, desc=message)
try:
# 打印成功访问的信息
print(f"✅ Processing started - IP: {client_ip}({country_info}), count: {IP_Dict[client_ip]}, prompt: {prompt.strip()}", flush=True)
# Call image editing processing function
result_url, message = process_image_edit(input_image, prompt.strip(), progress_callback)
if result_url:
print(f"✅ Processing completed successfully - IP: {client_ip}({country_info}), result_url: {result_url}", flush=True)
progress(1.0, desc="Processing completed")
return result_url, "✅ " + message
else:
print(f"❌ Processing failed - IP: {client_ip}({country_info}), error: {message}", flush=True)
return None, "❌ " + message
except Exception as e:
return None, f"❌ Error occurred during processing: {str(e)}"
# Create Gradio interface
def create_app():
with gr.Blocks(
title="AI Image Editor",
theme=gr.themes.Soft(),
css="""
.main-container {
max-width: 1200px;
margin: 0 auto;
}
.upload-area {
border: 2px dashed #ccc;
border-radius: 10px;
padding: 20px;
text-align: center;
}
.result-area {
margin-top: 20px;
padding: 20px;
border-radius: 10px;
background-color: #f8f9fa;
}
"""
) as app:
gr.Markdown(
"""
# 🎨 AI Image Editor
""",
elem_classes=["main-container"]
)
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### 📸 Upload Image")
input_image = gr.Image(
label="Select image to edit",
type="pil",
height=400,
elem_classes=["upload-area"]
)
gr.Markdown("### ✍️ Editing Instructions")
prompt_input = gr.Textbox(
label="Enter editing prompt",
placeholder="For example: change background to beach, add rainbow, remove background, etc...",
lines=3,
max_lines=5
)
edit_button = gr.Button(
"🚀 Start Editing",
variant="primary",
size="lg"
)
with gr.Column(scale=1):
gr.Markdown("### 🎯 Editing Result")
output_image = gr.Image(
label="Edited image",
height=400,
elem_classes=["result-area"]
)
status_output = gr.Textbox(
label="Processing status",
lines=2,
max_lines=3,
interactive=False
)
# Example area
gr.Markdown("### 💡 Prompt Examples")
with gr.Row():
example_prompts = [
"Change the character's background to a sunny seaside with blue waves.",
"Change the character's background to New York at night with neon lights.",
"Change the character's background to a fairytale castle with bright colors.",
"Change background to forest",
"Change background to snow mountain"
]
for prompt in example_prompts:
gr.Button(
prompt,
size="sm"
).click(
lambda p=prompt: p,
outputs=prompt_input
)
# Bind button click event
edit_button.click(
fn=edit_image_interface,
inputs=[input_image, prompt_input],
outputs=[output_image, status_output],
show_progress=True
)
return app
if __name__ == "__main__":
app = create_app()
app.queue() # Enable queue to handle concurrent requests
app.launch()
|