Spaces:
Sleeping
Sleeping
File size: 693 Bytes
c13eaf7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 |
from sentence_transformers import SentenceTransformer
import numpy as np
from fastapi import FastAPI
from pydantic import BaseModel
model = SentenceTransformer('sentence-transformers/LaBSE')
app = FastAPI()
class QuestionCheckRequestDTO(BaseModel):
correctAnswer: str
givenAnswer: str
@app.get("/")
def home():
return {"message": "All Ok!"}
@app.post("/llm/check-answer")
def checkAnswer(item: QuestionCheckRequestDTO):
texts = []
texts.append(item.correctAnswer)
texts.append(item.givenAnswer)
embeddings = model.encode(texts, convert_to_tensor=True)
sim = np.inner(embeddings[0], embeddings[1])
return {"output": str(sim)} |