from sentence_transformers import SentenceTransformer import numpy as np from fastapi import FastAPI from pydantic import BaseModel model = SentenceTransformer('sentence-transformers/LaBSE') app = FastAPI() class QuestionCheckRequestDTO(BaseModel): correctAnswer: str givenAnswer: str @app.get("/") def home(): return {"message": "All Ok!"} @app.post("/llm/check-answer") def checkAnswer(item: QuestionCheckRequestDTO): texts = [] texts.append(item.correctAnswer) texts.append(item.givenAnswer) embeddings = model.encode(texts, convert_to_tensor=True) sim = np.inner(embeddings[0], embeddings[1]) return {"output": str(sim)}