File size: 21,683 Bytes
2a6e44d a2ff005 2a6e44d 4612a25 2a6e44d 4612a25 0e7ae00 2a6e44d caa38e4 2a6e44d a2ff005 2a6e44d 6d970f0 a2ff005 6d970f0 2a6e44d 64567d1 2a6e44d caa38e4 2a6e44d a2ff005 2a6e44d a2ff005 4612a25 a2ff005 4612a25 0e7ae00 2a6e44d a2ff005 0e7ae00 a2ff005 67c32d2 4612a25 2a6e44d a2ff005 2a6e44d a2ff005 2a6e44d 67c32d2 2a6e44d 67c32d2 2a6e44d a2ff005 2a6e44d a2ff005 2a6e44d a2ff005 2a6e44d a2ff005 2a6e44d 4612a25 2a6e44d 4612a25 a2ff005 2a6e44d a2ff005 4612a25 67c32d2 2a6e44d 67c32d2 a2ff005 2a6e44d a2ff005 2a6e44d a2ff005 67c32d2 6d970f0 2a6e44d a2ff005 67c32d2 a2ff005 2a6e44d a2ff005 2a6e44d a2ff005 6d970f0 2a6e44d 64567d1 a2ff005 64567d1 a2ff005 64567d1 a2ff005 64567d1 a2ff005 64567d1 a2ff005 64567d1 a2ff005 64567d1 2a6e44d a2ff005 2a6e44d a2ff005 67c32d2 0e7ae00 2a6e44d 67c32d2 a2ff005 0e7ae00 4612a25 67c32d2 64567d1 2a6e44d a2ff005 0e7ae00 a2ff005 2a6e44d 0e7ae00 2a6e44d caa38e4 a2ff005 67c32d2 2a6e44d a2ff005 67c32d2 a2ff005 2a6e44d a2ff005 2a6e44d a2ff005 2a6e44d 67c32d2 a2ff005 2a6e44d a2ff005 2a6e44d a2ff005 2a6e44d a2ff005 2a6e44d a2ff005 67c32d2 2a6e44d a2ff005 64567d1 a2ff005 67c32d2 a2ff005 67c32d2 a2ff005 64567d1 a2ff005 f6674c5 67c32d2 2a6e44d a2ff005 0e7ae00 a2ff005 2a6e44d a2ff005 67c32d2 2a6e44d 67c32d2 a2ff005 2a6e44d a2ff005 2a6e44d a2ff005 2a6e44d a2ff005 2a6e44d a2ff005 2a6e44d a2ff005 2a6e44d a2ff005 2a6e44d a2ff005 64567d1 a2ff005 64567d1 a2ff005 64567d1 a2ff005 64567d1 a2ff005 64567d1 a2ff005 2a6e44d a2ff005 2a6e44d a2ff005 62985b6 0e7ae00 d0a24c7 2a6e44d 0e7ae00 6d970f0 67c32d2 2a6e44d a2ff005 2a6e44d a2ff005 2a6e44d a2ff005 2a6e44d 67c32d2 2a6e44d a2ff005 2a6e44d 67c32d2 a2ff005 2a6e44d a2ff005 2a6e44d a2ff005 2a6e44d a2ff005 2a6e44d 4612a25 a2ff005 67c32d2 a2ff005 64567d1 2a6e44d 67c32d2 a2ff005 2a6e44d a2ff005 6d970f0 2a6e44d a2ff005 2a6e44d 67c32d2 2a6e44d a2ff005 2a6e44d 6d970f0 a2ff005 2a6e44d a2ff005 793d592 a2ff005 6d970f0 67c32d2 2a6e44d 6d970f0 4612a25 a2ff005 2a6e44d a2ff005 2a6e44d 6d970f0 67c32d2 a2ff005 2a6e44d a2ff005 6d970f0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 |
import os
import io
import tempfile
import datetime
import textwrap
import numpy as np
import torch
import librosa
import gradio as gr
from reportlab.pdfgen import canvas
from reportlab.lib.pagesizes import letter
from reportlab.lib.utils import ImageReader
from reportlab.lib import colors
from reportlab.pdfbase import pdfmetrics
from reportlab.pdfbase.ttfonts import TTFont
from transformers import (
WhisperProcessor,
AutoModelForSpeechSeq2Seq,
AutoFeatureExtractor,
AutoModel,
)
from transformers import pipeline as hf_pipeline
# --- SciPy / librosa compatibility patch (hann -> windows.hann) ----------
try:
import scipy.signal as _sg
from scipy.signal import windows as _win
if not hasattr(_sg, "hann"):
_sg.hann = _win.hann
except Exception:
_sg = None
# ---------------------------------------------------------
# FONTS
# ---------------------------------------------------------
pdfmetrics.registerFont(TTFont("PlayfairBold", "PlayfairDisplay-Bold.ttf"))
pdfmetrics.registerFont(TTFont("Geneva", "Geneva.ttf"))
# ---------------------------------------------------------
# COLORS & CONFIG
# ---------------------------------------------------------
ACCENT = colors.HexColor("#8b5cf6") # violet accent
PRIMARY = colors.HexColor("#3b0c3f") # eggplant
LIGHT_GRAY = colors.HexColor("#e6e6e6")
GOLD = colors.HexColor("#f4c542") # deeper gold for better contrast
WHITE = colors.white
BLACK = colors.black
ENGINE_URL = "https://www.tourdefierce.vip/ai-music-detector"
LOGO_FILE = "logo.jpg"
ASR_MODEL = "openai/whisper-small" # best free-tier Whisper
CLF_MODEL = "microsoft/wavlm-base-plus-sv"
# ---------------------------------------------------------
# LOAD MODELS
# ---------------------------------------------------------
processor = WhisperProcessor.from_pretrained(ASR_MODEL)
asr_model = AutoModelForSpeechSeq2Seq.from_pretrained(ASR_MODEL)
asr_pipe = hf_pipeline(
"automatic-speech-recognition",
model=asr_model,
tokenizer=processor.tokenizer,
feature_extractor=processor.feature_extractor,
)
clf_processor = AutoFeatureExtractor.from_pretrained(CLF_MODEL)
clf_model = AutoModel.from_pretrained(CLF_MODEL)
# ---------------------------------------------------------
# DSP / ANALYSIS UTILITIES
# ---------------------------------------------------------
def compute_autotune_index(y, sr):
"""Heuristic autotune index: low pitch variance -> more 'quantized' -> higher score."""
f0, voiced, _ = librosa.pyin(
y,
sr=sr,
fmin=librosa.note_to_hz("C2"),
fmax=librosa.note_to_hz("C6"),
)
if f0 is None:
return 0.0
f0 = f0[voiced > 0.5]
if len(f0) < 10:
return 0.0
log_f0 = np.log(f0)
std = np.std(log_f0)
# Very smooth / quantized singing => lower std
max_std = 0.25
score = 1 - np.clip(std / max_std, 0, 1)
return float(score * 100.0)
def extract_embeddings(y, sr):
inp = clf_processor(y, sampling_rate=sr, return_tensors="pt")
with torch.no_grad():
out = clf_model(**inp).last_hidden_state.mean(dim=1).squeeze()
return out.cpu().numpy()
def calculate_ai_probability(emb, y, sr, autotune_idx):
"""
Heuristic AI probability in [0, 1].
Uses:
- Embedding norm
- Dynamic range
- Autotune index
"""
# Embedding norm (rough style/complexity proxy)
norm = np.linalg.norm(emb)
norm_min, norm_max = 40, 140
norm_scaled = np.clip((norm - norm_min) / (norm_max - norm_min), 0, 1)
# Dynamic range: very flat dynamics can hint at synthetic / over-processed audio
S = np.abs(librosa.stft(y))
rms = librosa.feature.rms(S=S)[0]
dyn_range = np.percentile(rms, 95) - np.percentile(rms, 5)
dyn_scaled = 1.0 - np.clip((dyn_range - 0.02) / 0.1, 0, 1) # flatter -> closer to 1
# Autotune contribution
at_scaled = autotune_idx / 100.0
# Weighted combination
raw = 0.4 * norm_scaled + 0.3 * dyn_scaled + 0.3 * at_scaled
# Squash to [0.05, 0.99] so we never hit absolute 0/100
ai_prob = float(np.clip(raw * 0.95 + 0.05, 0.05, 0.99))
return ai_prob
def detect_key(y, sr):
chroma = librosa.feature.chroma_cqt(y=y, sr=sr)
chroma_mean = chroma.mean(axis=1)
key_index = int(np.argmax(chroma_mean))
KEYS = ["C", "C#", "D", "Eb", "E", "F", "F#", "G", "Ab", "A", "Bb", "B"]
root = KEYS[key_index]
maj_energy = chroma_mean[(key_index + 4) % 12] + chroma_mean[(key_index + 7) % 12]
min_energy = chroma_mean[(key_index + 3) % 12] + chroma_mean[(key_index + 7) % 12]
return f"{root} major" if maj_energy >= min_energy else f"{root} minor"
def detect_bpm(y, sr):
onset_env = librosa.onset.onset_strength(y=y, sr=sr)
tempo = librosa.beat.tempo(onset_envelope=onset_env, sr=sr)
if tempo is None or len(tempo) == 0:
return 0.0
return float(tempo[0])
def estimate_voice_type(y, sr):
"""Very rough tessitura-based suggestion."""
f0, voiced, _ = librosa.pyin(
y,
sr=sr,
fmin=librosa.note_to_hz("C2"),
fmax=librosa.note_to_hz("C6"),
)
if f0 is None or np.sum(voiced) < 5:
return "Unable to estimate voice type from this clip."
f0 = f0[voiced > 0.5]
median_hz = np.median(f0)
median_note = librosa.hz_to_note(median_hz)
# Very coarse buckets
if median_hz < librosa.note_to_hz("G3"):
base = "lower voice (baritone / alto range)"
elif median_hz < librosa.note_to_hz("C4"):
base = "mid voice (baritenor / mezzo range)"
else:
base = "high voice (tenor or soprano range)"
return f"Given the tessitura, this song is best suited for a {base}."
def compute_production_polish(y, sr):
"""0-100: how polished / produced the track sounds."""
S = np.abs(librosa.stft(y))
rms = librosa.feature.rms(S=S)[0]
dyn_range = np.percentile(rms, 95) - np.percentile(rms, 5)
dyn_score = 1.0 - np.clip((dyn_range - 0.015) / 0.12, 0, 1)
flatness = np.mean(librosa.feature.spectral_flatness(S=S))
flat_score = np.clip((flatness - 0.1) / 0.4, 0, 1)
polish = 0.6 * dyn_score + 0.4 * flat_score
return float(polish * 100.0)
def compute_shade_score(ai_percent, autotune_idx, polish_idx):
"""
Shade Meter 0–100:
- 60% AI likelihood
- 25% autotune index
- 15% production polish
"""
shade = 0.6 * ai_percent + 0.25 * autotune_idx + 0.15 * polish_idx
return float(np.clip(shade, 0, 100))
# ---------------------------------------------------------
# TEXT HELPERS
# ---------------------------------------------------------
def wrap_paragraph(text, width=90):
lines = []
for para in text.splitlines():
if not para.strip():
lines.append("")
continue
lines.extend(textwrap.wrap(para, width=width))
return lines
def build_scientific_analysis(ai_pct, human_pct, autotune_idx, shade, key_sig, bpm, polish_idx):
lines = []
lines.append("Overview")
lines.append(
f"This clip was analyzed using a hybrid signal-processing and deep-learning stack. "
f"Based on embedding statistics, dynamic range, spectral behavior, and pitch stability, "
f"the system estimates a {ai_pct:.1f}% probability that the source material is AI-generated, "
f"and a {human_pct:.1f}% probability that it is primarily human-performed."
)
lines.append("")
lines.append("Pitch & Autotune")
lines.append(
f"Fundamental frequency tracking suggests an autotune index of {autotune_idx:.1f}/100. "
f"Lower scores indicate more organic pitch variance, while higher scores indicate quantized or "
f"grid-snapped intonation."
)
lines.append("")
lines.append("Rhythm & Tempo")
lines.append(
f"Tempo estimation places this performance at approximately {bpm:.1f} beats per minute. "
f"The detected tempo is derived from onset strength peaks and may vary slightly with different sections "
f"of the recording."
)
lines.append("")
lines.append("Timbre & Production")
lines.append(
f"Timbre and dynamics analysis yields a production polish score of {polish_idx:.1f}/100. "
f"Higher scores correspond to compressed, consistently loud, and spectrally uniform material, "
f"often associated with heavily produced or synthetic audio."
)
lines.append("")
lines.append("Musical Context")
lines.append(
f"Harmonic analysis indicates that the material centers around {key_sig}. "
f"This key estimate is based on chroma energy distribution over the length of the clip."
)
return "\n".join(lines)
def build_clapback(ai_pct, human_pct, autotune_idx, shade, key_sig, bpm, voice_text):
tone_lines = []
tone_lines.append("CLAPBACK SUMMARY")
tone_lines.append("")
if ai_pct >= 75:
tone_lines.append(
f"This track is giving **full robot fantasy** with an AI likelihood of {ai_pct:.1f}%. "
f"If there was a human involved, they were probably just pressing 'render.'"
)
elif ai_pct >= 40:
tone_lines.append(
f"This performance lives in the uncanny valley with an AI likelihood of {ai_pct:.1f}%. "
f"Some human in there, but the machines are definitely helping."
)
else:
tone_lines.append(
f"With only {ai_pct:.1f}% AI likelihood, this one is serving mostly human realness. "
f"Congrats: your soul is still in the mix."
)
tone_lines.append("")
if autotune_idx >= 70:
tone_lines.append(
f"Autotune index {autotune_idx:.1f}/100: every note is so locked to the grid it should pay rent there."
)
elif autotune_idx >= 35:
tone_lines.append(
f"Autotune index {autotune_idx:.1f}/100: tasteful correction, but we definitely hear the safety net."
)
else:
tone_lines.append(
f"Autotune index {autotune_idx:.1f}/100: pitch is flying mostly solo — brave, messy, and very human."
)
tone_lines.append("")
tone_lines.append(
f"Shade Meter score: {shade:.1f}/100. "
f"Zero would mean unplugged, unprocessed, angel-on-a-stool vibes. "
f"You're sitting at {shade:.1f}, which means there's at least a mild breeze of manufactured perfection "
f"blowing through this mix."
)
tone_lines.append("")
tone_lines.append(
f"Musically, the track hangs out around {key_sig} at about {bpm:.1f} BPM, so if you’re clapping back on TikTok, "
f"now you know what tempo to drag them in."
)
tone_lines.append("")
tone_lines.append(f"Voice-tessitura take: {voice_text}")
return "\n".join(tone_lines)
# ---------------------------------------------------------
# PDF GENERATION
# ---------------------------------------------------------
def scale_color(val, invert=False):
"""
For score boxes:
- green: good
- gold: medium
- red: high risk
"""
if invert:
# invert: low is good
if val <= 25:
return colors.green
if val <= 75:
return GOLD
return colors.red
else:
if val >= 75:
return colors.green
if val >= 25:
return GOLD
return colors.red
def make_pdf(
ai_score,
human_score,
atune,
shade,
key_sig,
bpm,
transcript,
scientific_text,
clapback_text,
clip_title,
polish_idx,
):
buffer = io.BytesIO()
c = canvas.Canvas(buffer, pagesize=letter)
W, H = letter
# Background
c.setFillColor(WHITE)
c.rect(0, 0, W, H, fill=1)
# Logo
try:
c.drawImage(LOGO_FILE, 40, H - 120, width=90, height=90)
except Exception:
pass
# Branding
c.setFillColor(PRIMARY)
c.setFont("PlayfairBold", 32)
c.drawString(150, H - 60, "Tour de Fierce")
c.setFillColor(ACCENT)
c.setFont("Geneva", 14)
c.drawString(150, H - 82, "Audio Clapback Report™")
# Timestamp & clip
c.setFillColor(BLACK)
c.setFont("Geneva", 10)
c.drawString(150, H - 98, f"Generated: {datetime.datetime.now().strftime('%Y-%m-%d %H:%M')}")
c.setFont("Geneva", 12)
c.drawString(40, H - 145, f"Clip analyzed: {clip_title}")
# QR to engine
try:
import qrcode
qr = qrcode.make(ENGINE_URL)
buf = io.BytesIO()
qr.save(buf, format="PNG")
buf.seek(0)
c.drawImage(ImageReader(buf), W - 120, H - 140, width=80, height=80)
except Exception:
pass
# Divider line
c.setStrokeColor(LIGHT_GRAY)
c.line(40, H - 165, W - 40, H - 165)
# ---------------------- SCORE BOXES ----------------------
c.setFillColor(scale_color(ai_score, invert=True))
c.rect(40, H - 260, 150, 80, fill=1)
c.setFillColor(WHITE)
c.setFont("Geneva", 11)
c.drawString(55, H - 195, "AI Likelihood")
c.setFont("PlayfairBold", 26)
c.drawString(55, H - 220, f"{ai_score:.1f}%")
c.setFillColor(scale_color(human_score))
c.rect(210, H - 260, 150, 80, fill=1)
c.setFillColor(WHITE)
c.setFont("Geneva", 11)
c.drawString(225, H - 195, "Human Likelihood")
c.setFont("PlayfairBold", 26)
c.drawString(225, H - 220, f"{human_score:.1f}%")
c.setFillColor(scale_color(atune, invert=True))
c.rect(380, H - 260, 150, 80, fill=1)
c.setFillColor(WHITE)
c.setFont("Geneva", 11)
c.drawString(395, H - 195, "Autotune Index")
c.setFont("PlayfairBold", 26)
c.drawString(395, H - 220, f"{atune:.1f}/100")
# ---------------------- SHADE METER ----------------------
c.setFillColor(BLACK)
c.setFont("Geneva", 12)
c.drawString(40, H - 295, "Shade Meter")
# capsule bar background (below the title so it doesn't overlap)
bar_y = H - 310
bar_height = 14
bar_width = 490
c.setFillColor(LIGHT_GRAY)
c.roundRect(40, bar_y, bar_width, bar_height, 7, fill=1)
# fill proportional to shade score
c.setFillColor(ACCENT)
fill_w = (shade / 100.0) * bar_width
c.roundRect(40, bar_y, fill_w, bar_height, 7, fill=1)
c.setFillColor(BLACK)
c.setFont("Geneva", 10)
c.drawString(540, bar_y + 1, f"{shade:.1f}/100")
# explanatory blurb
shade_blurb = (
"The Shade Meter provides a comprehensive analysis of the uploaded file, representing exactly "
"how much shade you are entitled to direct toward the source of the clip. The ideal score is 0%, "
"indicating real, acoustic instruments and un-pitch-corrected vocals. Moderate scores may reflect "
"MIDI instruments or noticeably processed vocals. A 100 is the ultimate shade parade, with 100% "
"confidence that the clip was generated by an AI system."
)
c.setFont("Geneva", 9)
ytxt = H - 330
for line in wrap_paragraph(shade_blurb, width=95):
c.drawString(40, ytxt, line)
ytxt -= 11
# ---------------------- MUSICALITY -----------------------
ytxt -= 5
c.setFont("PlayfairBold", 18)
c.setFillColor(PRIMARY)
c.drawString(40, ytxt, "Musicality Analysis")
ytxt -= 18
c.setFont("Geneva", 11)
c.setFillColor(BLACK)
c.drawString(40, ytxt, f"Key Signature: {key_sig}")
ytxt -= 14
c.drawString(40, ytxt, f"Tempo (BPM): {bpm:.1f}")
ytxt -= 20
# ----------------- TECHNICAL FORENSIC ANALYSIS -----------------
c.setFont("PlayfairBold", 18)
c.setFillColor(PRIMARY)
c.drawString(40, ytxt, "Technical Forensic Analysis")
ytxt -= 18
c.setFont("Geneva", 10)
c.setFillColor(BLACK)
for line in wrap_paragraph(scientific_text, width=95):
if ytxt < 60:
c.showPage()
W2, H2 = letter
c.setFont("Geneva", 10)
ytxt = H2 - 60
c.drawString(40, ytxt, line)
ytxt -= 11
# ----------------- CLAPBACK SECTION -----------------
ytxt -= 10
c.setFont("PlayfairBold", 18)
c.setFillColor(PRIMARY)
if ytxt < 60:
c.showPage()
W2, H2 = letter
ytxt = H2 - 60
c.drawString(40, ytxt, "Clapback Shade Report")
ytxt -= 18
c.setFont("Geneva", 10)
c.setFillColor(BLACK)
for line in wrap_paragraph(clapback_text, width=95):
if ytxt < 60:
c.showPage()
W2, H2 = letter
c.setFont("Geneva", 10)
ytxt = H2 - 60
c.drawString(40, ytxt, line)
ytxt -= 11
# ----------------- TRANSCRIPT -----------------
ytxt -= 10
c.setFont("PlayfairBold", 18)
c.setFillColor(PRIMARY)
if ytxt < 60:
c.showPage()
W2, H2 = letter
ytxt = H2 - 60
c.drawString(40, ytxt, "Transcript")
ytxt -= 18
c.setFont("Geneva", 9)
c.setFillColor(BLACK)
for line in wrap_paragraph(transcript, width=100):
if ytxt < 50:
c.showPage()
W2, H2 = letter
c.setFont("Geneva", 9)
ytxt = H2 - 60
c.drawString(40, ytxt, line)
ytxt -= 10
# footer on last page
c.setStrokeColor(LIGHT_GRAY)
c.line(40, 40, W - 40, 40)
c.setFont("Geneva", 9)
c.drawString(40, 28, "© 2025 Tour de Fierce — All Shade, No Shame.")
c.drawString(300, 28, "www.tourdefierce.vip")
c.save()
buffer.seek(0)
fname = f"clapback-{datetime.datetime.now().strftime('%Y%m%d-%H%M%S')}.pdf"
tmp = tempfile.NamedTemporaryFile(delete=False, suffix=f"_{fname}")
tmp.write(buffer.getvalue())
tmp.close()
return tmp.name
# ---------------------------------------------------------
# MAIN ANALYSIS PIPELINE
# ---------------------------------------------------------
def run_analysis(audio_file):
if not audio_file:
return (
"No audio file uploaded.",
"",
"",
"",
"",
"",
"",
"",
"",
"",
None,
)
# load
y, sr = librosa.load(audio_file, sr=16000, mono=True)
# transcription
try:
text = asr_pipe({"array": y, "sampling_rate": sr})["text"]
except Exception:
text = "[Transcription unavailable]"
# core metrics
autotune_idx = compute_autotune_index(y, sr)
polish_idx = compute_production_polish(y, sr)
emb = extract_embeddings(y, sr)
ai_prob = calculate_ai_probability(emb, y, sr, autotune_idx)
human_prob = 1.0 - ai_prob
ai_pct = ai_prob * 100.0
human_pct = human_prob * 100.0
shade = compute_shade_score(ai_pct, autotune_idx, polish_idx)
key_sig = detect_key(y, sr)
bpm = detect_bpm(y, sr)
voice_text = estimate_voice_type(y, sr)
scientific_text = build_scientific_analysis(
ai_pct, human_pct, autotune_idx, shade, key_sig, bpm, polish_idx
)
clapback_text = build_clapback(
ai_pct, human_pct, autotune_idx, shade, key_sig, bpm, voice_text
)
clip_title = os.path.basename(audio_file)
pdf_path = make_pdf(
ai_pct,
human_pct,
autotune_idx,
shade,
key_sig,
bpm,
text,
scientific_text,
clapback_text,
clip_title,
polish_idx,
)
return (
text,
f"{ai_pct:.1f}%",
f"{human_pct:.1f}%",
f"{autotune_idx:.1f}",
f"{shade:.1f}",
key_sig,
f"{bpm:.1f}",
voice_text,
scientific_text,
clapback_text,
pdf_path,
)
# --------------------------------------------------------------
# UI
# --------------------------------------------------------------
with gr.Blocks() as demo:
gr.HTML(
"""
<div style='text-align:center; padding:20px;'>
<h1 style='font-size:36px; font-weight:800;'>
👋 Tour de Fierce Audio Clapback Engine™
</h1>
<p style='color:#ccc;'>
AI Detector • Autotune Detector • Key & BPM • Forensic Reporting
</p>
</div>
"""
)
with gr.Row():
audio_in = gr.Audio(type="filepath", label="Upload audio")
run_btn = gr.Button("Run Clapback 👏", variant="primary")
with gr.Row():
transcript = gr.Textbox(
label="Transcript",
interactive=False,
lines=5,
show_label=True,
)
with gr.Row():
ai_out = gr.Textbox(label="AI Likelihood", interactive=False)
human_out = gr.Textbox(label="Human Likelihood", interactive=False)
atune_out = gr.Textbox(label="Autotune Index", interactive=False)
with gr.Row():
shade_out = gr.Textbox(label="Shade Meter", interactive=False)
key_out = gr.Textbox(label="Key Signature", interactive=False)
bpm_out = gr.Textbox(label="Tempo (BPM)", interactive=False)
voice_out = gr.Textbox(label="Suggested Voice Type", interactive=False)
with gr.Row():
forensic_out = gr.Textbox(
label="Technical Forensic Analysis",
interactive=False,
lines=12,
)
clapback_out = gr.Textbox(
label="Clapback Shade Report",
interactive=False,
lines=12,
)
pdf_download = gr.File(label="Download Report")
run_btn.click(
fn=run_analysis,
inputs=audio_in,
outputs=[
transcript,
ai_out,
human_out,
atune_out,
shade_out,
key_out,
bpm_out,
voice_out,
forensic_out,
clapback_out,
pdf_download,
],
)
demo.launch()
|