File size: 2,927 Bytes
fd45282 75ecc06 fd45282 abc9568 f5f891b 910df84 e8510b9 c0ba1b5 75ecc06 ecec6e3 75ecc06 ecec6e3 75ecc06 c80b246 14c753e ecec6e3 1c0fdf3 ecec6e3 c80b246 ecec6e3 c80b246 ecec6e3 1c0fdf3 ecec6e3 1c0fdf3 ecec6e3 0316dcf 910df84 0316dcf ecec6e3 0316dcf ba7f366 ecec6e3 910df84 2b46df4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 |
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM
from peft import PeftModel
import torch
import requests
import json
import time
def auto_refresh_sensor():
while True:
sensor_box.value = sensor_display_text()
time.sleep(5)
demo.load(auto_refresh_sensor, None, None)
model_id = "deepseek-ai/deepseek-coder-1.3b-base"
lora_id = "Seunggg/lora-plant"
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)
base = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype=torch.float32, # Hugging Face Spaces 一般用 float32
trust_remote_code=True
)
model = PeftModel.from_pretrained(
base,
lora_id,
torch_dtype=torch.float32
)
model.eval()
from transformers import pipeline
pipe = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
max_new_tokens=256
)
def get_sensor_data():
try:
res = requests.get("https://arduino-realtime.onrender.com/api/data", timeout=5)
sensor_data = res.json().get("sensorData", None)
return sensor_data if sensor_data else {}
except Exception as e:
return {"错误": str(e)}
def sensor_display_text():
sensor_data = get_sensor_data()
return json.dumps(sensor_data, ensure_ascii=False, indent=2) if sensor_data else "暂无传感器数据"
def generate_answer(user_input):
if not user_input.strip():
return "请输入植物相关的问题 😊"
prompt = f"用户提问:{user_input}\n请用更人性化的语言生成建议,并推荐相关植物文献或资料。\n回答:"
try:
result = pipe(prompt)
output = result[0]["generated_text"]
return output.replace(prompt, "").strip()
except Exception as e:
return f"生成建议时出错:{str(e)}"
def update_chart():
sensor_data = get_sensor_data()
if not sensor_data or "温度" not in sensor_data:
return gr.LinePlot.update(value=None)
return {
"data": [
{"x": [0], "y": [sensor_data.get("温度", 0)], "name": "温度"},
{"x": [0], "y": [sensor_data.get("湿度", 0)], "name": "湿度"}
],
"layout": {"title": "实时传感器数据"}
}
# 在 Blocks 里这样写:
with gr.Blocks() as demo:
gr.Markdown("# 🌱 植物助手 - 实时传感器联动")
with gr.Row():
sensor_box = gr.Textbox(label="🧪 当前传感器数据", lines=6, interactive=False)
chart = gr.LinePlot(label="📈 实时数据图表", x="x", y="y", overlay=True)
question = gr.Textbox(label="🌿 植物问题", lines=4, placeholder="请输入植物相关的问题 😊")
answer_box = gr.Textbox(label="🤖 回答建议", lines=8, interactive=False)
send_btn = gr.Button("发送")
send_btn.click(fn=generate_answer, inputs=question, outputs=answer_box)
# 启动后台线程更新数据
demo.launch()
|