Spaces:
Sleeping
Sleeping
File size: 53,079 Bytes
0bb7250 d1c9e68 0bb7250 d1c9e68 f042e0a d1c9e68 13b9fe8 de6b896 a300581 0bb7250 d1c9e68 976b0e8 d1c9e68 ba32bea d1c9e68 ba32bea d1c9e68 0e7b49b 1f4db3d 670c54b 1f4db3d 0e7b49b 1f4db3d 0e7b49b d1c9e68 1f4db3d d1c9e68 ba32bea d1c9e68 de6b896 a300581 de6b896 db49384 71e2f41 de6b896 a300581 de6b896 d1c9e68 de6b896 a300581 de6b896 71e2f41 de6b896 a300581 de6b896 d1c9e68 248d44b d1c9e68 33bca8f de6b896 d1c9e68 33bca8f de6b896 248d44b d1c9e68 33bca8f 248d44b d1c9e68 96b4276 d1c9e68 96b4276 d1c9e68 96b4276 71e2f41 96b4276 d1c9e68 96b4276 d1c9e68 1a15afe d1c9e68 1a15afe d1c9e68 96b4276 d1c9e68 518acf0 daa836b 518acf0 0bb7250 3e7af6a d1c9e68 3e7af6a d1c9e68 23e32c3 d1c9e68 6a6038b 1a15afe 71e2f41 6a6038b 80b1a6d d1c9e68 bfadf11 d1c9e68 96b4276 d99b3df 96b4276 71e2f41 96b4276 d1c9e68 670c54b d1c9e68 96b4276 f9bec28 71e2f41 96b4276 3b20814 96b4276 d1c9e68 f042e0a 0bb7250 f042e0a d1c9e68 de6b896 d1c9e68 57734cb d1c9e68 ba32bea d1c9e68 ba32bea d1c9e68 f5238be 71e2f41 f5238be d1c9e68 f5238be d1c9e68 f5238be d1c9e68 ba32bea d1c9e68 f042e0a d1c9e68 f042e0a d1c9e68 f042e0a 0bb7250 bbc93ef 0bb7250 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 |
import gradio as gr
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import matplotlib
from sklearn.preprocessing import StandardScaler
import plotly.graph_objects as go
import tensorflow as tf
import joblib
import os
from mpltern.datasets import get_triangular_grid
from itertools import product
# from llama_cpp import Llama
import time
import networkx as nx
import matplotlib.patheffects as pe
from huggingface_hub import hf_hub_download
from huggingface_hub import list_repo_files
import shutil
import tempfile
csv_cache = {}
# --- Dark mode setup ---
matplotlib.rcParams.update({
'axes.facecolor': '#111111',
'figure.facecolor': '#111111',
'axes.edgecolor': 'white',
'axes.labelcolor': 'white',
'xtick.color': 'white',
'ytick.color': 'white',
'text.color': 'white',
'savefig.facecolor': '#111111',
})
# Creating the ternary mesh
x_ = np.linspace(1, 98, 98)[::-1]
y_ = np.linspace(1, 98, 98)[::-1]
z_ = np.linspace(1, 98, 98)[::-1]
x__, y__, z__ = np.meshgrid(x_, y_, z_, indexing='ij')
x, y, z = np.where(x__ + y__ + z__ == 100)
max(x_[x] + y_[y] + z_[z])
generation_mix = np.concatenate([x_[x].reshape(x.shape[0],1),z_[z].reshape(x.shape[0],1),y_[y].reshape(x.shape[0],1)],1)
image_options = ["distribution.png", "contribution.png", "voltage_violations.png"]
donut_data = {
"Nine-Bus-Load-Increase-Event": {
"values": [4239, 612, 207, 393],
"titles": ["Stable\nCases", "Unstable\nCases", "Failed\nCases", "Voltage\nViolations"]
},
"Nine-Bus-Short-Circuit-Event": {
"values": [4239, 612, 207, 393],
"titles": ["Stable\nCases", "Unstable\nCases", "Failed\nCases", "Voltage\nViolations"]
}
}
def plot_adjacency_graph(ix, folder, layer):
result = test_read(int(ix), folder)
print("DEBUG: test_read returned type:", type(result))
print("DEBUG: test_read content preview:", repr(result))
if not isinstance(result, tuple) or len(result) != 6:
raise ValueError("Expected 6 outputs from test_read(), but got something else.")
X_scaled, adj_matrices, y_labels_bin, largest_eig, df_clean, df_raw = result
last_graph = adj_matrices[-1, -1, :, :, :]
fig = visualize_adjacency_2d_clean(last_graph, layer)
return fig
def update_metrics_on_folder_change(folder):
values_map = {
"Nine-Bus-Load-Increase-Event": [4239, 612, 207, 393, 47],
"Nine-Bus-Short-Circuit-Event": [3656, 1195, 4312, 539, 30],
}
values = values_map.get(folder, [0, 0, 0, 0, 0])
return [
f"""
<div style='display: flex; flex-direction: column; align-items: center; text-align: center; width: 100%;'>
<div class='metric-label'>{init_donut_titles[i]}</div>
<div class='metric-value'>{values[i]:,}</div>
</div>
""" for i in range(5)
]
def toggle_auto_mode(current_state):
new_state = not current_state
return (
new_state,
gr.update(
value="Auto-Predict (ON)" if new_state else "Auto-Predict (OFF)",
elem_classes=["auto-on"] if new_state else ["auto-off"]
)
)
def maybe_auto_predict(sg, gfm, gfl, folder, auto_enabled):
time.sleep(5)
if auto_enabled:
ix = find_index(sg, 100 - sg - gfm, gfm)
ix = find_index(sg, 100 - sg - gfm, gfm)
return plot_result(ix, folder)
return gr.update() # no update if auto-predict is off
def maybe_auto_graph(sg, gfm, gfl, folder, auto_enabled):
if auto_enabled:
ix = find_index(sg, 100 - sg - gfm, gfm)
return plot_adjacency_graph(ix, folder)
return gr.update() # no update if auto-predict is off
def make_donut(value, title, fill_color='#00FFAA'):
frac = value / 4851
fig, ax = plt.subplots(figsize=(2.4, 2.4), dpi=100)
fig.patch.set_facecolor("#1c1c1c")
# Donut
ax.pie(
[frac, 1 - frac],
radius=1,
startangle=90,
colors=[fill_color, '#333333'],
wedgeprops=dict(width=0.1)
)
ax.set(aspect="equal")
# Inset label inside the hole
ax.text(
0, 0.05, # slight upward nudge
f"{title}\n{int(value)} / 4851",
ha='center',
va='center',
fontsize=12,
color='white'
)
# fig.patch.set_facecolor('#111111')
plt.subplots_adjust(left=0.05, right=0.95, top=0.95, bottom=0.05) # keep layout tight
return fig
def update_donuts(values, titles):
return [
make_donut(values[0], titles[0]),
make_donut(values[1], titles[1]),
make_donut(values[2], titles[2]),
make_donut(values[3], titles[3]),
]
def cycle_image(current_index, folder):
next_index = (current_index + 1) % len(image_options)
filename = image_options[next_index]
try:
# Download to cache
cached_path = hf_hub_download(
repo_id=f"SevatarOoi/{folder}",
filename=filename,
repo_type="dataset",
token=os.getenv("DATA_ACCESS"),
)
# Copy to temp
temp_path = os.path.join(tempfile.gettempdir(), f"{folder}_{filename}")
shutil.copy(cached_path, temp_path)
return temp_path, next_index
except Exception as e:
print(f"cycle_image error: {e}")
return None, current_index
def get_distribution_image(folder):
try:
# Download to cache
cached_path = hf_hub_download(
repo_id=f"SevatarOoi/{folder}",
filename="distribution.png",
token=os.getenv("DATA_ACCESS"),
repo_type="dataset"
)
# Copy to temp
temp_path = os.path.join(tempfile.gettempdir(), f"{folder}_distribution.png")
shutil.copy(cached_path, temp_path)
return temp_path
except Exception as e:
print(f"get_distribution_image error: {e}")
return None
def update_donuts_on_folder_change(folder):
data = donut_data.get(folder, {"values": [0]*4, "titles": [f"Donut {i+1}" for i in range(4)]})
colors = ['#0040FF', '#FF00AA', '#AA00FF', '#00FFFF'] # Neon blue, red, purple, cyan
figs = []
for i in range(4):
fig = make_donut(data["values"][i], data["titles"][i], fill_color=colors[i])
figs.append(fig)
return figs
def get_folder_info(folder):
folder_map = {
"Nine-Bus-Load-Increase-Event": "🟦 Load Increase Dataset \nSimulation Duration: 60 s \nTime Resolution: 0.001 s \nEvent: 10% global load increase \nEvent Start: s = 20\nEvent Duration: 40 s",
"Nine-Bus-Short-Circuit-Event": "🟥 Short-Circuit Dataset \nSimulation Duration: 60 s \nTime Resolution: 0.001 s \nEvent: Short-circuit at Line 4-5 \nEvent Start: s = 20\nEvent Duration: 0.05 s"
}
description = folder_map.get(folder, "ℹ️ No description available.")
try:
files = list_repo_files(
repo_id=f"SevatarOoi/{folder}",
repo_type="dataset",
token=os.getenv("DATA_ACCESS"),
)
csv_files = [f for f in files if f.endswith("_100.csv")]
num_files = len(csv_files)
stats = f"📁 Files: {num_files} \n💾 Size: N/A (remote access)"
except Exception as e:
print(f"⚠️ Failed to list files in {folder}: {e}")
stats = "📁 Files: 0 \n💾 Size: N/A"
return f"{description}\n\n{stats}"
# def load_csv(ix, folder):
# cache_key = (folder, ix) # key must include folder
# if cache_key not in csv_cache:
# filepath = f'./{folder}/{ix}_100.csv'
# if not os.path.exists(filepath):
# return None
# try:
# df = pd.read_csv(
# filepath,
# header=None,
# on_bad_lines='skip',
# low_memory=False,
# na_values=["-nan(ind)", "nan", "NaN", ""]
# )
# df = df.fillna(0)
# csv_cache[cache_key] = df
# except Exception as e:
# print(f"Failed to load {filepath}: {e}")
# return None
# return csv_cache[cache_key]
def load_csv(ix, folder):
cache_key = (folder, ix)
if cache_key not in csv_cache:
try:
csv_path = hf_hub_download(
repo_id=f"SevatarOoi/{folder}",
filename=f"{ix}_100.csv",
token=os.getenv("DATA_ACCESS"),
repo_type="dataset"
)
df = pd.read_csv(
csv_path,
header=None,
on_bad_lines='skip',
low_memory=False,
na_values=["-nan(ind)", "nan", "NaN", ""]
).fillna(0)
csv_cache[cache_key] = df
except Exception as e:
print(f"❌ Failed to load {ix} in {folder}: {e}")
return None
return csv_cache[cache_key]
def blank_figure(msg="No data available"):
fig, ax = plt.subplots()
fig.patch.set_facecolor("#1c1c1c")
ax.text(0.5, 0.5, msg, ha='center', va='center', color='white', fontsize=12)
ax.axis('off')
# fig.patch.set_facecolor('#111111')
return fig
def clear_csv_cache():
csv_cache.clear()
# --- Ternary plot callback ---
def mpltern_plot(sg=None, gfl=None, gfm=None):
t, l, r = get_triangular_grid(n=21)
fig = plt.figure(figsize=(6, 6))
fig.patch.set_facecolor("#1c1c1c")
ax = fig.add_subplot(projection='ternary', ternary_sum=100)
ax.triplot(t, l, r, color='grey', alpha=0.3)
if sg is not None and gfl is not None and gfm is not None:
ax.scatter(sg, gfm, gfl, color='white', s=40, edgecolor='black', label='Selected')
ax.set_tlabel('η(SG) [%]')
ax.set_llabel('η(GFM) [%]')
ax.set_rlabel('η(GFL) [%]')
ax.taxis.set_label_position('tick1')
ax.laxis.set_label_position('tick1')
ax.raxis.set_label_position('tick1')
ax.taxis.set_tick_params(tick2On=True, colors='#0096FF', grid_color='grey')
ax.laxis.set_tick_params(tick2On=True, colors='#FFFF00', grid_color='grey')
ax.raxis.set_tick_params(tick2On=True, colors='#39FF14', grid_color='grey')
ax.taxis.label.set_color('#0096FF')
ax.laxis.label.set_color('#FFFF00')
ax.raxis.label.set_color('#39FF14')
ax.spines['tside'].set_color('#39FF14')
ax.spines['lside'].set_color('#0096FF')
ax.spines['rside'].set_color('#FFFF00')
# ax.set_title("15% Active Load Increase - Incomplete, Unstable Cases", color='white')
return fig
def on_sg_change(sg_val, gfm_val, gfl_val, folder):
sg_val = int(np.clip(sg_val, 1, 98))
remaining = 100 - sg_val
gfm_val = int(np.clip(gfm_val, 1, remaining - 1))
gfl_val = 100 - sg_val - gfm_val
if gfl_val < 1:
gfl_val = 1
gfm_val = 100 - sg_val - gfl_val
ix = find_index(sg_val, gfl_val, gfm_val)
if ix == "Not found" or load_csv(ix, folder) is None:
return sg_val, gfm_val, gfl_val, "", mpltern_plot(sg_val, gfl_val, gfm_val), blank_figure("No voltage"), blank_figure("No generation"), blank_figure("No eigenvalues")
return sg_val, gfm_val, gfl_val, ix, mpltern_plot(sg_val, gfl_val, gfm_val), voltage_plot(ix, folder), generation_plot(ix, folder), eigenvalue_plot(ix, folder)
def on_gfm_change(sg_val, gfm_val, gfl_val, folder):
gfm_val = int(np.clip(gfm_val, 1, 98))
remaining = 100 - sg_val
gfl_val = 100 - sg_val - gfm_val
if gfl_val < 1:
gfl_val = 1
gfm_val = 100 - sg_val - gfl_val
ix = find_index(sg_val, gfl_val, gfm_val)
if ix == "Not found" or load_csv(ix, folder) is None:
return sg_val, gfm_val, gfl_val, "", mpltern_plot(sg_val, gfl_val, gfm_val), blank_figure("No voltage"), blank_figure("No generation"), blank_figure("No eigenvalues")
return sg_val, gfm_val, gfl_val, ix, mpltern_plot(sg_val, gfl_val, gfm_val), voltage_plot(ix, folder), generation_plot(ix, folder), eigenvalue_plot(ix, folder)
def on_gfl_change(sg_val, gfm_val, gfl_val, folder):
gfl_val = int(np.clip(gfl_val, 1, 98))
remaining = 100 - sg_val
gfm_val = 100 - sg_val - gfl_val
if gfm_val < 1:
gfm_val = 1
gfl_val = 100 - sg_val - gfm_val
ix = find_index(sg_val, gfl_val, gfm_val)
if ix == "Not found" or load_csv(ix, folder) is None:
return sg_val, gfm_val, gfl_val, "", mpltern_plot(sg_val, gfl_val, gfm_val), blank_figure("No voltage"), blank_figure("No generation"), blank_figure("No eigenvalues")
return sg_val, gfm_val, gfl_val, ix, mpltern_plot(sg_val, gfl_val, gfm_val), voltage_plot(ix, folder), generation_plot(ix, folder), eigenvalue_plot(ix, folder)
def on_folder_change(sg_val, gfm_val, gfl_val, folder):
ix = find_index(sg_val, gfl_val, gfm_val)
ix_int = int(ix) if ix != "Not found" else -1
return (
ix,
mpltern_plot(sg_val, gfl_val, gfm_val),
voltage_plot(ix_int,folder) if ix_int >= 0 else blank_figure("No voltage"),
generation_plot(ix_int,folder) if ix_int >= 0 else blank_figure("No voltage"),
eigenvalue_plot(ix_int,folder) if ix_int >= 0 else blank_figure("No eigenvalues"),
# plot_result(ix_int,folder) if ix_int >= 0 else blank_figure("No prediction")
)
def find_index(sg, gfl, gfm):
target = np.array([sg, gfl, gfm])
for i, row in enumerate(generation_mix):
if np.array_equal(row, target):
return str(i)
return "Not found"
# --- Custom Keras functions ---
@tf.keras.utils.register_keras_serializable()
def squeeze_last_axis(x):
import tensorflow as tf
return tf.squeeze(x, axis=-1)
@tf.keras.utils.register_keras_serializable()
def zeros_like_input(x):
import tensorflow as tf
return tf.zeros_like(x)
@tf.keras.utils.register_keras_serializable()
class GraphConvLSTMCell(tf.keras.layers.Layer):
def __init__(self, units, **kwargs):
super(GraphConvLSTMCell, self).__init__(**kwargs)
self.units = units
def build(self, input_shape):
self.gc_x = tf.keras.layers.Dense(4 * self.units, use_bias=False)
self.gc_h = tf.keras.layers.Dense(4 * self.units, use_bias=True)
def call(self, inputs, states):
X, A = inputs
h_prev, c_prev = states
AX = tf.matmul(A, X)
gates_x = self.gc_x(AX)
gates_h = self.gc_h(h_prev)
gates = gates_x + gates_h
i, f, o, g = tf.split(gates, num_or_size_splits=4, axis=-1)
i = tf.sigmoid(i)
f = tf.sigmoid(f)
o = tf.sigmoid(o)
g = tf.tanh(g)
c = f * c_prev + i * g
h = o * tf.tanh(c)
return h, [h, c]
def get_config(self):
return {"units": self.units, **super().get_config()}
# --- Load resources ---
scaler = joblib.load("scaler_9bus.pkl")
model = tf.keras.models.load_model(
"9bus_li010_and_sc_w1000_genmix_sequential_lstgcm2_buses468_gens.keras",
custom_objects={
"GraphConvLSTMCell": GraphConvLSTMCell,
},
safe_mode=False
)
# --- Placeholder for adjacency computation ---
def compute_multilayer_adjacency(X, dt, total_vars, num_gens, r=5):
X1, X2 = X[:-1, :].T, X[1:, :].T
U, S, Vh = np.linalg.svd(X1, full_matrices=False)
Ur, Sr, Vr = U[:, :r], np.diag(S[:r]), Vh[:r, :]
A_tilde = Ur.T @ X2 @ Vr.T @ np.linalg.pinv(Sr)
eigvals, W = np.linalg.eig(A_tilde)
Phi = X2 @ Vr.T @ np.linalg.pinv(Sr) @ W
element_factors = np.abs(Phi)
adj_part_factors = element_factors @ element_factors.T
mode_magnitudes = element_factors.mean(axis=1)
adj_mode_magnitude = np.outer(mode_magnitudes, mode_magnitudes)
mode_phases = np.angle(Phi)
phase_per_element = mode_phases.mean(axis=1)
adj_mode_phase = np.outer(phase_per_element, phase_per_element)
eig_real = np.abs(eigvals.real.mean())
adj_eig_real = np.full((total_vars, total_vars), eig_real)
eig_norm = np.linalg.norm(eigvals)
adj_eig_norm = np.full((total_vars, total_vars), eig_norm)
# gen_mix_weights = np.ones(total_vars)
# gen_mix_weights[-num_gens:] = np.linspace(0.5, 1.5, num_gens)
# adj_gen_mix = np.outer(gen_mix_weights, gen_mix_weights)
adj_matrix = np.stack([
adj_part_factors,
adj_mode_magnitude,
adj_mode_phase,
adj_eig_real,
adj_eig_norm,
# adj_gen_mix
], axis=-1)
for layer in range(adj_matrix.shape[-1]):
max_val = adj_matrix[:, :, layer].max()
if max_val != 0:
adj_matrix[:, :, layer] /= max_val
else:
adj_matrix[:, :, layer] = 0
return adj_matrix
# --- Preprocessing and prediction pipeline ---
def test_read(ix,folder):
csv_path = hf_hub_download(
repo_id=f"SevatarOoi/{folder}",
filename=f"{ix}_100.csv",
token=os.getenv("DATA_ACCESS"),
repo_type="dataset"
)
df_raw = load_csv(ix, folder) # loads it properly with skiprows=2
data_list = []
indices = []
# df_raw = pd.read_csv(f"./9bus_load_inc/{int(ix)}_100.csv", header=None, on_bad_lines='skip', low_memory=False)
# df_raw = load_csv(ix, folder)
if df_raw is None:
return blank_figure("CSV not found")
meta_components = df_raw.iloc[0]
meta_variables = df_raw.iloc[1]
max_length = 30000
if len(df_raw.iloc[2:60002]) == 60000:
data = df_raw.iloc[2:max_length+2].reset_index(drop=True)
# Bus-related data explicitly
bus_names = [f'Bus {i}' for i in [4,6,8]]
bus_vars = ['m:u1 in p.u.', 'm:fehz in Hz']
# Generator data explicitly
gen_names = ['G1', 'GFM', 'PV GFL']
gen_vars = ['m:P:bus1 in MW', 'm:Q:bus1 in Mvar', 'n:fehz:bus1 in Hz']
selected_columns = []
renamed_columns = []
# Select bus columns
for col_idx, (comp, var) in enumerate(zip(meta_components, meta_variables)):
if comp in bus_names and var in bus_vars:
selected_columns.append(data.columns[col_idx])
suffix = 'V' if 'u1' in var else 'f'
renamed_columns.append(f"{comp.replace(' ', '')}_{suffix}")
# Select generator columns
for col_idx, (comp, var) in enumerate(zip(meta_components, meta_variables)):
if comp in gen_names and var in gen_vars:
selected_columns.append(data.columns[col_idx])
var_short = var.split(':')[1].replace('bus1 in ', '').replace(' ', '')
renamed_columns.append(f"{comp.replace(' ', '')}_{var_short}")
# Select generator columns
df_clean = data[selected_columns].copy()
df_clean.columns = renamed_columns
df_clean = df_clean.astype(float)
data_list.append(df_clean.values)
indices.append(ix)
data_array = np.stack(data_list, axis=0)
data = data_array
# Parameters
dt = 0.001
window_size = 1000
step_size = 100
sequence_length = 5
num_buses = 3
num_gens = 3
total_vars = 2 * num_buses + 3 * num_gens
np.random.seed(42)
r = 5
X_sequences, A_sequences, y_labels, y_labels_bin = [], [], [], []
for i, idx in enumerate(indices):
eig_path = hf_hub_download(
repo_id=f"SevatarOoi/{folder}",
filename=f"eigenvalues_b_{idx}_100.csv",
token=os.getenv("DATA_ACCESS"),
repo_type="dataset"
)
largest_eig = np.loadtxt(eig_path, delimiter=',')[0][0]
# largest_eig = np.loadtxt(f'./{folder}/eigenvalues_b_{idx}_100.csv', delimiter=',')[0][0]
print(f'largest eigenvalue: {largest_eig}')
# Precompute all adjacencies clearly once
adj_list = []
X_windows = []
for j in range(0, max_length - window_size + 1, step_size):
window = data_array[i, j:j + window_size, :]
X_windows.append(window)
adj_matrix = compute_multilayer_adjacency(window, dt, total_vars, num_gens, r)
adj_list.append(adj_matrix)
# Use precomputed adjacencies explicitly in sequences
num_sequences = len(X_windows) - sequence_length + 1
for seq_start in range(num_sequences):
X_seq = X_windows[seq_start:seq_start + sequence_length]
A_seq = adj_list[seq_start:seq_start + sequence_length]
X_sequences.append(X_seq)
A_sequences.append(A_seq)
y_labels.append(largest_eig)
y_labels_bin.append(
1 if largest_eig > 0.00001 and (19000 + seq_start * step_size) > (20000 - window_size) else 0
)
X_sequences = np.array(X_sequences)
adj_matrices = np.array(A_sequences)
X_scaled = scaler.transform(X_sequences.reshape(-1, X_sequences.shape[-1]))
# Reshape back to original shape
X_scaled = X_scaled.reshape(X_sequences.shape)
y_labels = np.array(y_labels)
y_labels_bin = np.array(y_labels_bin)
print("DEBUG: test_read returning", type(X_scaled), type(adj_matrices), type(y_labels_bin), type(largest_eig), type(df_clean), type(df_raw))
return X_scaled, adj_matrices, y_labels_bin, largest_eig, df_clean, df_raw
def plot_result(ix_str, folder):
try:
if ix_str == "Not found":
return blank_figure("No valid index for prediction")
ix = int(ix_str)
X, A, y, eig, _, df_raw = test_read(ix, folder)
y_p = model.predict([X, A]).flatten()
fig, ax = plt.subplots(figsize=(16, 10))
fig.patch.set_facecolor("#1c1c1c")
ax.scatter(range(len(y_p)), y_p, s=1)
ax.set_ylim([-0.5, 1.5])
ax.set_title(f'Case {ix} Destabilization Likelihood Over Time')
ax.set_ylabel('Destabilization Likelihood')
ax.set_xlabel('Time (100 ms)')
fig.tight_layout()
return fig
except Exception as e:
fig, ax = plt.subplots()
fig.patch.set_facecolor("#1c1c1c")
ax.text(0.5, 0.5, f"❌ {str(e)}", ha='center', va='center')
ax.axis('off')
fig.tight_layout()
return fig
def plot_waveform_from_df(df_raw):
try:
data = df_raw[2:60000:100, [7, 11, 15]].astype(float)
fig, ax = plt.subplots()
fig.patch.set_facecolor("#1c1c1c")
ax.plot(data.index, data.iloc[:, 0], label='Col 9')
ax.plot(data.index, data.iloc[:, 1], label='Col 13')
ax.plot(data.index, data.iloc[:, 2], label='Col 17')
ax.set_title("Selected Waveforms")
ax.legend()
return fig
except Exception as e:
fig, ax = plt.subplots()
fig.patch.set_facecolor("#1c1c1c")
ax.text(0.5, 0.5, f"Waveform Error: {e}", ha='center', va='center')
ax.axis('off')
return fig
def voltage_plot(ix, folder):
df_raw = load_csv(ix, folder)
if df_raw is None:
return blank_figure("CSV not found")
try:
voltages = df_raw.iloc[2:60000:600, [7, 11, 15]].astype(float)
except Exception as e:
return blank_figure(f"Voltage plot error: {e}")
fig, ax = plt.subplots(figsize=(16,5))
fig.patch.set_facecolor("#1c1c1c")
ax.plot(voltages.index, voltages.iloc[:, 0], label='Bus 4')
ax.plot(voltages.index, voltages.iloc[:, 1], label='Bus 6')
ax.plot(voltages.index, voltages.iloc[:, 2], label='Bus 8')
ax.set_title("Principle Bus Voltages")
ax.set_ylabel("Voltage (p.u.)")
ax.set_xlabel("Time (ms)")
ax.legend()
fig.tight_layout(pad=2)
return fig
def generation_plot(ix, folder):
df_raw = load_csv(ix, folder)
if df_raw is None:
return blank_figure("CSV not found")
try:
SG = np.sqrt(df_raw.iloc[2:,19].astype(float)**2 + df_raw.iloc[2:,20].astype(float)**2)
GFM = np.sqrt(df_raw.iloc[2:,22].astype(float)**2 + df_raw.iloc[2:,23].astype(float)**2)
GFL = np.sqrt(df_raw.iloc[2:,51].astype(float)**2 + df_raw.iloc[2:,52].astype(float)**2)
except Exception as e:
return blank_figure(f"Generation plot error: {e}")
fig, ax = plt.subplots(figsize=(16,5))
fig.patch.set_facecolor("#1c1c1c")
ax.plot(SG.index, SG, label='SG',color='#0096FF')
ax.plot(GFM.index, GFM, label='GFM',color='#FFFF00')
ax.plot(GFL.index, GFL, label='GFL',color='#39FF14')
ax.set_title("Generation by Type")
ax.set_ylabel("Dispatches (MVA)")
ax.set_xlabel("Time (ms)")
ax.legend()
fig.tight_layout(pad=2)
return fig
def eigenvalue_plot(ix, folder):
try:
eig_path = hf_hub_download(
repo_id=f"SevatarOoi/{folder}",
filename=f"eigenvalues_b_{ix}_100.csv",
token=os.getenv("DATA_ACCESS"),
repo_type="dataset"
)
eigenvalues = np.loadtxt(eig_path, delimiter=',')
# eigenvalues = np.loadtxt(f'./{folder}/eigenvalues_b_{int(ix)}_100.csv', delimiter=',')
except:
return go.Figure().update_layout(
paper_bgcolor="#111111",
plot_bgcolor="#111111",
annotations=[dict(text="No such case", x=0.5, y=0.5, showarrow=False, font=dict(color="white"))]
)
# Clip values
real = np.clip(eigenvalues[:, 0], -12, 12)
imag = np.clip(eigenvalues[:, 1], -12, 12)
fig = go.Figure()
fig.add_trace(go.Scatter(
x=real,
y=imag,
mode='markers',
marker=dict(color='cyan', size=5),
hovertemplate="Re: %{x:.2f}<br>Im: %{y:.2f}<extra></extra>"
))
fig.update_layout(
title="System Eigenvalues",
xaxis=dict(title="Real Part", range=[-12, 12], color='white', gridcolor='gray'),
yaxis=dict(title="Imaginary Part", range=[-12, 12], color='white', gridcolor='gray'),
plot_bgcolor="#111111",
paper_bgcolor="#111111",
font=dict(color='white'),
)
return fig
def regenerate_adjacency_gif(ix_display, folder):
ix = int(ix_display.strip())
X_scaled, adj_matrices, _, _, _, _ = test_read(ix, folder)
gif_path = f"adj_gif_{ix}.gif"
generate_adjacency_gif_from_tensor(adj_matrices, layer=0, output_path=gif_path)
return gif_path
def switch_ui(current):
return (
gr.update(visible=not current),
gr.update(visible=current),
not current # update internal state
)
# with open("grid_cortex_detailed_system_prompts.txt", "r") as f:
# with open("grid_cortex_super_summary_prompts.txt", "r") as f:
# system_prompt = "\n".join(f.read().splitlines())
# llm = Llama(
# model_path="mistral-7b-instruct-v0.1.Q4_K_M.gguf",
# n_ctx=1024, # reduced context window = faster
# n_threads=8,
# n_batch=64 # optionally tune for faster CPU throughput
# )
# MAX_RESPONSE_TOKENS = 1500000 # lower for speed
# MAX_CHAT_PAIRS = 5
def count_tokens(text):
return len(llm.tokenize(text.encode("utf-8")))
def trim_chat_by_tokens(history, system_prompt, user_input, max_tokens=1024, buffer_tokens=200):
# Reserve space for response and system + current user input
reserved = buffer_tokens + count_tokens(system_prompt + f"\nUser: {user_input}\nAssistant:")
prompt_parts = []
total_tokens = 0
for user, bot in reversed(history): # start from latest
block = f"User: {user}\nAssistant: {bot}\n"
block_tokens = count_tokens(block)
if total_tokens + block_tokens + reserved > max_tokens:
break
prompt_parts.insert(0, block) # prepend
total_tokens += block_tokens
history_text = "".join(prompt_parts)
full_prompt = system_prompt + "\n" + history_text + f"User: {user_input}\nAssistant:"
return full_prompt
context_limit = 1024 # same as n_ctx you passed to Llama
max_response_tokens = 1500000
def chat_with_gpt(system_prompt, history, user_input):
prompt = f"{system_prompt}\nUser: {user_input}\nAssistant:"
output = llm(
prompt=prompt,
max_tokens=1500000,
temperature=0.0,
echo=False
)
response = output["choices"][0]["text"].strip()
# Store only current pair (if you still want chatbot display)
return [{"role": "user", "content": user_input}, {"role": "assistant", "content": response}], ""
def visualize_adjacency_2d_clean(
adj_matrix,
layer,
max_node_size=3000,
max_node_fontsize=16,
max_edge_width=8,
max_edge_fontsize=14
):
raw_labels = [
"Bus 4 Voltage", "Bus 4 Frequency",
"Bus 6 Voltage", "Bus 6 Frequency",
"Bus 8 Voltage", "Bus 8 Frequency",
"SG Active Power", "SG Reactive Power", "SG Frequency",
"GFM Active Power", "GFM Reactive Power", "GFM Frequency",
"GFL Active Power", "GFL Reactive Power", "GFL Frequency"
]
layer_labels = ["Participation Factors", "Mode Magnitudes", "Modes Phases"]
multiline_labels = ["\n".join(label.split()) for label in raw_labels]
sg_nodes = multiline_labels[6:9]
gfm_nodes = multiline_labels[9:12]
gfl_nodes = multiline_labels[12:15]
adj_matrix = adj_matrix[:, :, int(layer)].copy()
np.fill_diagonal(adj_matrix, 0)
G = nx.from_numpy_array(adj_matrix)
threshold = 0.05
edges_to_remove = [(u, v) for u, v, d in G.edges(data=True) if d["weight"] < threshold]
G.remove_edges_from(edges_to_remove)
raw_pos = nx.circular_layout(G)
mapping = dict(zip(G.nodes(), multiline_labels))
G = nx.relabel_nodes(G, mapping)
pos = {mapping[k]: v for k, v in raw_pos.items()}
node_strength = dict(G.degree(weight="weight"))
node_sizes = [min(max_node_size, max(300, node_strength[n] * 1000)) for n in G.nodes()]
node_borders = []
for n in G.nodes():
if n in sg_nodes:
node_borders.append("#00ffff")
elif n in gfm_nodes:
node_borders.append("#ffff00")
elif n in gfl_nodes:
node_borders.append("#00ff66")
else:
node_borders.append("#6a0dad")
edge_colors = []
edge_widths = []
edge_font_sizes = {}
for u, v, d in G.edges(data=True):
w = d["weight"]
edge_widths.append(min(max_edge_width, w * 4))
edge_font_sizes[(u, v)] = min(max_edge_fontsize, max(9, w * 20))
if u in sg_nodes and v in gfm_nodes:
edge_colors.append("#80ff80")
elif u in sg_nodes and v in gfl_nodes:
edge_colors.append("#66ffcc")
elif u in gfm_nodes and v in gfl_nodes:
edge_colors.append("#ccff33")
elif u in sg_nodes:
edge_colors.append("#00ffff")
elif u in gfm_nodes:
edge_colors.append("#ffff00")
elif u in gfl_nodes:
edge_colors.append("#00ff66")
else:
edge_colors.append("#ffffff")
node_font_sizes = {n: min(max_node_fontsize, max(9, node_strength[n] * 5)) for n in G.nodes()}
fig, ax = plt.subplots(figsize=(12, 12), facecolor="none")
ax.set_xlim(-1.1, 1.1)
ax.set_ylim(-1.1, 1.1)
for n in G.nodes():
idx = list(G.nodes()).index(n)
nx.draw_networkx_nodes(
G, pos,
ax=ax,
nodelist=[n],
node_shape="o",
node_color="#111111",
edgecolors=[node_borders[idx]],
linewidths=2,
node_size=[node_sizes[idx]]
)
ax.text(
*pos[n], n,
ha='center', va='center',
fontsize=node_font_sizes[n],
fontweight='bold',
color='white',
path_effects=[
pe.Stroke(linewidth=1.5, foreground="black"),
pe.Normal()
]
)
nx.draw_networkx_edges(
G, pos,
ax=ax,
edge_color=edge_colors,
width=edge_widths
)
edge_labels = {(u, v): f"{G[u][v]['weight']:.2f}" for u, v in G.edges()}
for (u, v), label in edge_labels.items():
x = (pos[u][0] + pos[v][0]) / 2
y = (pos[u][1] + pos[v][1]) / 2 + 0.04
ax.text(
x, y, label,
fontsize=edge_font_sizes[(u, v)],
color='white',
ha='center', va='center',
path_effects=[
pe.Stroke(linewidth=1.5, foreground="black"),
pe.Normal()
]
)
# plt.title(f"Adjacency Graph ({layer_labels[int(layer)]})", fontsize=16, color='white')
plt.axis("off")
fig.patch.set_alpha(0.0)
plt.close(fig)
return fig
# # Visualize last graph in the last sequence
# X_scaled, adj_matrices, y_labels_bin, largest_eig, df_clean, df_raw = test_read(33,init_folder)
# last_graph = adj_matrices[-1,-1,:,:,:] # shape (N, N, D)
# visualize_adjacency_2d_clean(last_graph,1)
from PIL import Image
def generate_adjacency_gif_from_tensor(adj_matrices, layer=0, step=10, total_time_sec=60, output_path="adjacency_evolution.gif"):
import os
import tempfile
import matplotlib.pyplot as plt
import networkx as nx
import matplotlib.patheffects as pe
import numpy as np
substack = adj_matrices[:, -1, :, :, :]
num_frames = substack.shape[0]
dt = total_time_sec / num_frames
raw_labels = [
"Bus 4 Voltage", "Bus 4 Frequency",
"Bus 6 Voltage", "Bus 6 Frequency",
"Bus 8 Voltage", "Bus 8 Frequency",
"SG Active Power", "SG Reactive Power", "SG Frequency",
"GFM Active Power", "GFM Reactive Power", "GFM Frequency",
"GFL Active Power", "GFL Reactive Power", "GFL Frequency"
]
multiline_labels = ["\n".join(label.split()) for label in raw_labels]
sg_nodes = multiline_labels[6:9]
gfm_nodes = multiline_labels[9:12]
gfl_nodes = multiline_labels[12:15]
temp_dir = tempfile.mkdtemp()
frame_paths = []
for i in range(0, num_frames, step):
adj = substack[i, :, :, int(layer)].copy()
np.fill_diagonal(adj, 0)
G = nx.from_numpy_array(adj)
threshold = 0.05
G.remove_edges_from([(u, v) for u, v, d in G.edges(data=True) if d['weight'] < threshold])
mapping = dict(zip(G.nodes(), multiline_labels))
G = nx.relabel_nodes(G, mapping)
pos = nx.circular_layout(G)
node_strength = dict(G.degree(weight='weight'))
node_sizes = [min(3000, max(300, node_strength[n] * 1000)) for n in G.nodes()]
node_borders = [
'#00ffff' if n in sg_nodes else
'#ffff00' if n in gfm_nodes else
'#00ff66' if n in gfl_nodes else
'#6a0dad'
for n in G.nodes()
]
edge_colors = []
edge_widths = []
edge_font_sizes = {}
for u, v, d in G.edges(data=True):
w = d['weight']
edge_widths.append(min(8, w * 4))
edge_font_sizes[(u, v)] = min(14, max(9, w * 20))
if u in sg_nodes and v in gfm_nodes:
edge_colors.append("#80ff80")
elif u in sg_nodes and v in gfl_nodes:
edge_colors.append("#66ffcc")
elif u in gfm_nodes and v in gfl_nodes:
edge_colors.append("#ccff33")
elif u in sg_nodes:
edge_colors.append("#00ffff")
elif u in gfm_nodes:
edge_colors.append("#ffff00")
elif u in gfl_nodes:
edge_colors.append("#00ff66")
else:
edge_colors.append("#ffffff")
node_font_sizes = {n: min(16, max(9, node_strength[n] * 5)) for n in G.nodes()}
fig, ax = plt.subplots(figsize=(12, 12))
ax.set_xlim(-1.1, 1.1)
ax.set_ylim(-1.1, 1.1)
fig.patch.set_facecolor("#111111")
ax.set_facecolor("#111111")
ax.axis("off")
for n in G.nodes():
idx = list(G.nodes()).index(n)
nx.draw_networkx_nodes(
G, pos,
ax=ax,
nodelist=[n],
node_shape="o",
node_color="#111111",
edgecolors=[node_borders[idx]],
linewidths=2,
node_size=[node_sizes[idx]]
)
ax.text(
*pos[n], n,
ha='center', va='center',
fontsize=node_font_sizes[n],
fontweight='bold',
color='white',
path_effects=[
pe.Stroke(linewidth=1.5, foreground="black"),
pe.Normal()
]
)
nx.draw_networkx_edges(
G, pos,
ax=ax,
edge_color=edge_colors,
width=edge_widths
)
edge_labels = {(u, v): f"{G[u][v]['weight']:.2f}" for u, v in G.edges()}
for (u, v), label in edge_labels.items():
x = (pos[u][0] + pos[v][0]) / 2
y = (pos[u][1] + pos[v][1]) / 2 + 0.04
ax.text(
x, y, label,
fontsize=edge_font_sizes[(u, v)],
color='white',
ha='center', va='center',
path_effects=[
pe.Stroke(linewidth=1.5, foreground="black"),
pe.Normal()
]
)
t_sec = int(round(i * dt))
label = "(Pre-Event)" if t_sec < 21 else "(Post-Event)"
ax.set_title(f"Time: {t_sec} sec {label}", fontsize=18, color='white')
frame_path = os.path.join(temp_dir, f"frame_{i:04d}.png")
fig.savefig(frame_path, dpi=100, bbox_inches='tight')
plt.close(fig)
frame_paths.append(frame_path)
# Load frames as PIL images
images = [Image.open(f).convert("RGB") for f in frame_paths]
images[0].save(
output_path,
save_all=True,
append_images=images[1:],
duration=500, # milliseconds per frame = 2 sec
loop=0
)
print(f"✅ GIF saved to {output_path}")
return output_path
import gradio as gr
with gr.Blocks(
theme=gr.themes.Base(),
css="""
:root {
--color-background-primary: #111111 !important;
--color-text: #ffffff !important;
}
body {
background-color: #111111 !important;
color: #ffffff !important;
}
.gradio-container, .main, .gr-block {
background-color: #111111 !important;
color: #ffffff !important;
}
.title-block {
background-color: #1c1c1c;
border-radius: 0px;
padding: 6px;
margin-bottom: 0px;
font-size: 96px;
}
.gr-dropdown {
margin-top: 2px !important;
background-color: #1c1c1c !important;
}
.donut-row .gr-box {
border: none !important;
box-shadow: none !important;
background: transparent !important;
padding: 0 !important;
margin: 0 4px 0 0 !important;
}
#ix-label {
margin: 0 !important;
padding: 0 !important;
line-height: 0.5;
font-size: 13px;
background-color: 1c1c1c;
}
#ix-description {
margin: -10px 12px 0 -12px !important; /* top/right/bottom/left */
padding: 0 !important;
font-size: 11px;
line-height: 1.;
color: #888888 !important; /* lighter grey for readability */
background-color: transparent !important;
text-align: justify !important;
}
.auto-toggle .gr-button {
background-color: #333 !important;
color: white !important;
font-weight: bold;
border: 1px solid #555 !important;
}
.auto-on .gr-button {
background-color: #00FFFF !important;
color: black !important;
border: 1px solid #00eaff !important;
box-shadow: 0 0 8px #00eaff88;
font-weight: bold;
}
.wrap-button .gr-button {
white-space: normal !important;
line-height: 1.2;
text-align: center;
width: 90px !important;
font-size: 13px;
padding: 6px;
}
.gr-box {
background-color: #1c1c1c !important;
border: none !important;
}
#metric-row {
flex-wrap: nowrap !important;
gap: 0px;
margin-top: 8px;
margin-bottom: 12px;
}
.metric-box {
text-align: center;
border-right: 1px solid #444;
padding: 0 12px;
}
.metric-box:last-child {
border-right: none;
}
#metric-bar {
display: flex;
justify-content: space-between;
align-items: center;
background-color: #1c1c1c;
border-radius: 8px;
padding: 10px 16px;
}
.metric-container {
display: flex;
align-items: center;
flex: 1;
}
.metric-content {
flex: 1;
text-align: center;
}
.metric-vline {
width: 1px;
height: 48px;
background-color: #444;
margin: 0 12px;
}
.metric-label {
font-size: 11px;
color: #aaa;
margin-bottom: 2px;
}
.metric-value {
font-size: 26px;
font-weight: bold;
line-height: 1.1;
color: white;
}
.gr-plot:hover, .gr-image:hover, .gr-textbox:hover {
box-shadow: 0 0 12px #00ffff99 !important;
transform: scale(1.01);
}
.gr-button {
border-radius: 8px !important;
padding: 10px 14px !important;
font-weight: bold !important;
transition: all 0.2s ease;
background-color: #222 !important;
color: white !important;
border: 1px solid #00ffff66 !important;
}
.gr-button:hover {
background-color: #00ffff22 !important;
border-color: #00ffff !important;
box-shadow: 0 0 8px #00ffff88;
}
.title-block {
color: #ffffff;
padding: 6px 4px;
font-size: 42px;
font-weight: 700;
text-align: center;
font-family: "Inter", "Segoe UI", sans-serif;
text-transform: none;
letter-spacing: 0.5px;
margin-bottom: 8px;
}
.gr-box, .gr-plot, .gr-image, .gr-textbox, .gr-dropdown {
background-color: #1c1c1c !important;
background: #111111 !important;
border: 1px solid #333 !important;
border-radius: 10px !important;
box-shadow: 0 0 8px #00ffff44 !important;
padding: 8px !important;
transition: all 0.2s ease-in-out;
}
.color-0 { color: #FFFFFF !important; }
.color-1 { color: #FFFFFF !important; }
.color-2 { color: #FFFFFF !important; }
.color-3 { color: #FFFFFF !important; }
.color-4 { color: #FFFFFF !important; }
padding-right: 8px;
"""
) as demo:
with gr.Row():
image_index = gr.State(False) # starts at "distribution.png"
auto_predict = gr.State(True)
init_donut_values = [4239, 612, 207, 393, 47]
init_donut_titles = ["Stable<br>Cases", "Unstable<br>Cases", "Failed<br>Cases", "Voltage<br>Violations", "Oscillatory<br>Unstable Cases"]
init_donut_colors = ['#0040FF', '#FF00FF', '#AA00FF', '#00FFAA'] # neon blue, red, purple, cyan
# text_colors = ["#0040FF", "#FF00FF", "#AA00FF", "#00FFAA", "#008B8B"]
text_colors = ["#FFFFFF", "#FFFFFF", "#FFFFFF", "#FFFFFF", "#FFFFFF"]
layer = 0
metric_blocks = []
init_sg, init_gfm, init_gfl = 33, 33, 34
init_ix = find_index(init_sg, init_gfl, init_gfm)
ix = init_ix
init_folder = "Nine-Bus-Load-Increase-Event"
formatted = [f"{v:,}" for v in init_donut_values]
display_text = ", ".join(formatted)
with gr.Column(scale=1):
# Title in grey block
gr.Markdown('<div class="title-block">GRID CORTEX</div>')
folder_selector = gr.Dropdown(
choices=["Nine-Bus-Load-Increase-Event", "Nine-Bus-Short-Circuit-Event"],
value="Nine-Bus-Load-Increase-Event",
label="Select Dataset Folder",
interactive=True
)
gr.HTML('<div id="ix-description">The time-series data and modal analysis results are located within each folder.</div>')
try:
image_path = hf_hub_download(
repo_id="SevatarOoi/Nine-Bus-Load-Increase-Event",
filename="distribution.png",
repo_type="dataset",
token=os.getenv("DATA_ACCESS"),
local_dir="temp_images",
local_dir_use_symlinks=False
)
except Exception as e:
print(f"⚠️ Failed to fetch distribution image: {e}")
image_path = None
distribution_image = gr.Image(
label=None,
interactive=False,
value=image_path,
elem_id="floating-distribution"
)
gr.HTML('<div id="ix-description">The overall distribution of stability in the dataset, in various aspects. Toggle for different views.</div>')
folder_selector.change(
fn=get_distribution_image,
inputs=folder_selector,
outputs=distribution_image
)
toggle_button = gr.Button("Toggle (Takes 3 seconds)")
toggle_button.click(
fn=cycle_image,
inputs=[image_index, folder_selector],
outputs=[distribution_image, image_index]
)
with gr.Column(scale=5):
folder_info_box = gr.Markdown(get_folder_info("Nine-Bus-Load-Increase-Event"))
# with gr.Row(elem_classes=["donut-row"]):
# donut1 = gr.Plot(value=make_donut(init_donut_values[0], init_donut_titles[0], fill_color=init_donut_colors[0]), scale=1, label="", show_label=False)
# donut2 = gr.Plot(value=make_donut(init_donut_values[1], init_donut_titles[1], fill_color=init_donut_colors[1]), scale=1, label="", show_label=False)
# donut3 = gr.Plot(value=make_donut(init_donut_values[2], init_donut_titles[2], fill_color=init_donut_colors[2]), scale=1, label="", show_label=False)
# donut4 = gr.Plot(value=make_donut(init_donut_values[3], init_donut_titles[3], fill_color=init_donut_colors[3]), scale=1, label="", show_label=False)
with gr.Row(elem_id="metric-bar"):
for i, (value, label) in enumerate(zip(init_donut_values, init_donut_titles)):
# Wrap both the metric and optional vertical line into one container
html = f"""
<div class='metric-container'>
<div class='metric-content'>
<div class='metric-label'>{label}</div>
<div class='metric-value color-{i}'>{value:,}</div>
</div>
</div>
"""
metric_blocks.append(gr.HTML(html))
generation_display = gr.Plot(value=generation_plot(init_ix,init_folder), label="", show_label=False)
gr.HTML('<div id="ix-description">The dispatches by SG, GFM, and GFL units.</div>')
waveform_display = gr.Plot(value=voltage_plot(init_ix,init_folder), label="", show_label=False)
gr.HTML('<div id="ix-description">The voltage measurements of buses 4, 6, 8, which are the three buses required for complete observability.</div>')
eigenvalue_display = gr.Plot(value=eigenvalue_plot(init_ix,init_folder), label="", show_label=False)
gr.HTML('<div id="ix-description">Modal analysis of the system at t = 60 s.</div>')
prediction_plot = gr.Plot(value=plot_result(init_ix,init_folder), label="", show_label=False)
gr.HTML('<div id="ix-description">Likelihood of the system to destabilize as predicted by the sliding-window DMD workflow.</div>')
adj_gif_display = gr.Image(value="adjacency_evolution.gif", label="Adjacency Graph Evolution", interactive=False)
gr.HTML('<div id="ix-description">Evolution of the system dynamics calculated using DMD windows. Edge thicknesses are proportional to their values. Node radii are proportional to the sum of conneted edge values.</div>')
with gr.Column(scale=1):
ix_display = gr.Markdown(f"{init_ix}", elem_id="ix-label")
ternary_plot = gr.Plot(value=mpltern_plot(...), label="Ternary Mix Plot")
gr.HTML('<div id="ix-description">Location of the current generation mix on the ternary plot.</div>')
adj_graph_plot = gr.Plot(value=plot_adjacency_graph(init_ix, init_folder, layer), label="Steady-State Adjacency Graph")
gr.HTML('<div id="ix-description">The final system dynamics.</div>')
sg = gr.Slider(1, 98, value=init_sg, step=1, label="SG [%]", elem_classes=["square-slider"])
gfm = gr.Slider(1, 98, value=init_gfm, step=1, label="GFM [%]", elem_classes=["square-slider"])
gfl = gr.Slider(1, 98, value=init_gfl, step=1, label="GFL [%]", elem_classes=["square-slider"])
gr.HTML('<div id="ix-description">First adjust the SG penetration, then adjust the GFM penetration. GFM penetration + SG penetration cannot exceed 99%.</div>')
with gr.Row():
run_btn = gr.Button("Run Prediction", elem_classes=["wrap-button"],scale=1)
auto_btn = gr.Button("Auto-Predict (ON)", elem_classes=["auto-toggle", "auto-on"],scale=1)
# adj_button = gr.Button("Show Steady-State Adjacency")
# generate_gif_button = gr.Button("Show Adjacency Dynamics")
gr.Markdown(
"""
<div style="padding: 16px; background-color: #1e1e1e; border: 1px solid #333; border-radius: 8px; text-align: center; font-size: 16px;">
<strong>Upcoming!</strong><br>Cortex-GPT for AI-Assisted Data Analysis and Recommendations
</div>
"""
)
# chatbot = gr.Chatbot(label="Grid Cortex GPT", type="messages")
user_input = gr.Textbox()
# chat_state = gr.State([])
# system_prompts = gr.State(system_prompt)
# user_input.submit(
# fn=chat_with_gpt,
# inputs=[system_prompts, chat_state, user_input],
# outputs=[chatbot, user_input]
# )
sg.release(fn=on_sg_change, inputs=[sg, gfm, gfl, folder_selector], outputs=[sg, gfm, gfl, ix_display, ternary_plot, waveform_display, generation_display, eigenvalue_display])
gfm.release(fn=on_gfm_change, inputs=[sg, gfm, gfl, folder_selector], outputs=[sg, gfm, gfl, ix_display, ternary_plot, waveform_display, generation_display, eigenvalue_display])
gfl.release(fn=on_gfl_change, inputs=[sg, gfm, gfl, folder_selector], outputs=[sg, gfm, gfl, ix_display, ternary_plot, waveform_display, generation_display, eigenvalue_display])
sg.release(fn=maybe_auto_predict, inputs=[sg, gfm, gfl, folder_selector, auto_predict], outputs=prediction_plot)
gfm.release(fn=maybe_auto_predict, inputs=[sg, gfm, gfl, folder_selector, auto_predict], outputs=prediction_plot)
gfl.release(fn=maybe_auto_predict, inputs=[sg, gfm, gfl, folder_selector, auto_predict], outputs=prediction_plot)
sg.release(fn=lambda ix, folder: plot_adjacency_graph(ix, folder, layer=0), inputs=[ix_display, folder_selector], outputs=adj_graph_plot)
gfm.release(fn=lambda ix, folder: plot_adjacency_graph(ix, folder, layer=0), inputs=[ix_display, folder_selector], outputs=adj_graph_plot)
gfl.release(fn=lambda ix, folder: plot_adjacency_graph(ix, folder, layer=0), inputs=[ix_display, folder_selector], outputs=adj_graph_plot)
sg.release(fn=regenerate_adjacency_gif, inputs=[ix_display, folder_selector], outputs=adj_gif_display)
gfm.release(fn=regenerate_adjacency_gif, inputs=[ix_display, folder_selector], outputs=adj_gif_display)
gfl.release(fn=regenerate_adjacency_gif, inputs=[ix_display, folder_selector], outputs=adj_gif_display)
run_btn.click(fn=plot_result, inputs=[ix_display,folder_selector], outputs=[prediction_plot])
folder_selector.change(
fn=on_folder_change,
inputs=[sg, gfm, gfl, folder_selector],
outputs=[ix_display, ternary_plot, waveform_display, generation_display, eigenvalue_display]
)
folder_selector.change(
fn=get_folder_info,
inputs=folder_selector,
outputs=folder_info_box
)
# folder_selector.change(
# fn=update_donuts_on_folder_change,
# inputs=folder_selector,
# outputs=[donut1, donut2, donut3, donut4]
# )
folder_selector.change(
fn=maybe_auto_predict,
inputs=[sg, gfm, gfl, folder_selector, auto_predict],
outputs=prediction_plot
)
folder_selector.change(
fn=update_metrics_on_folder_change,
inputs=[folder_selector],
outputs=metric_blocks
)
folder_selector.change(
fn=regenerate_adjacency_gif,
inputs=[ix_display, folder_selector],
outputs=adj_gif_display
)
auto_btn.click(fn=toggle_auto_mode, inputs=auto_predict, outputs=[auto_predict,auto_btn])
# llm("System: You are an assistant.\nUser: Hello\nAssistant:", max_tokens=1)
demo.launch()
|