""" :: Face averager Usage: averager.py --images= [--blur] [--plot] [--background=(black|transparent|average)] [--width=] [--height=] [--out=] [--destimg=] Options: -h, --help Show this screen. --images= Folder to images (.jpg, .jpeg, .png) --blur Flag to blur edges of image [default: False] --width= Custom width of the images/video [default: 500] --height= Custom height of the images/video [default: 600] --out= Filename to save the average face [default: result.png] --destimg= Destination face image to overlay average face --plot Flag to display the average face [default: False] --background= Background of image to be one of (black|transparent|average) [default: black] --version Show version. """ from docopt import docopt import os import cv2 import numpy as np import matplotlib.pyplot as plt import matplotlib.image as mpimg from facemorpher import locator from facemorpher import aligner from facemorpher import warper from facemorpher import blender from facemorpher import plotter def list_imgpaths(imgfolder): for fname in os.listdir(imgfolder): if (fname.lower().endswith('.jpg') or fname.lower().endswith('.png') or fname.lower().endswith('.jpeg')): yield os.path.join(imgfolder, fname) def sharpen(img): blured = cv2.GaussianBlur(img, (0, 0), 2.5) return cv2.addWeighted(img, 1.4, blured, -0.4, 0) def load_image_points(path, size): img = cv2.imread(path) points = locator.face_points(img) if len(points) == 0: print('No face in %s' % path) return None, None else: return aligner.resize_align(img, points, size) def averager(imgpaths, dest_filename=None, width=500, height=600, background='black', blur_edges=False, out_filename='result.png', plot=False): size = (height, width) images = [] point_set = [] for path in imgpaths: img, points = load_image_points(path, size) if img is not None: images.append(img) point_set.append(points) if len(images) == 0: raise FileNotFoundError('Could not find any valid images.' + ' Supported formats are .jpg, .png, .jpeg') if dest_filename is not None: dest_img, dest_points = load_image_points(dest_filename, size) if dest_img is None or dest_points is None: raise Exception('No face or detected face points in dest img: ' + dest_filename) else: dest_img = np.zeros(images[0].shape, np.uint8) dest_points = locator.average_points(point_set) num_images = len(images) result_images = np.zeros(images[0].shape, np.float32) for i in range(num_images): result_images += warper.warp_image(images[i], point_set[i], dest_points, size, np.float32) result_image = np.uint8(result_images / num_images) face_indexes = np.nonzero(result_image) dest_img[face_indexes] = result_image[face_indexes] mask = blender.mask_from_points(size, dest_points) if blur_edges: blur_radius = 10 mask = cv2.blur(mask, (blur_radius, blur_radius)) if background in ('transparent', 'average'): dest_img = np.dstack((dest_img, mask)) if background == 'average': average_background = locator.average_points(images) dest_img = blender.overlay_image(dest_img, mask, average_background) print('Averaged {} images'.format(num_images)) plt = plotter.Plotter(plot, num_images=1, out_filename=out_filename) plt.save(dest_img) plt.plot_one(dest_img) plt.show() def main(): args = docopt(__doc__, version='Face Averager 1.0') try: averager(list_imgpaths(args['--images']), args['--destimg'], int(args['--width']), int(args['--height']), args['--background'], args['--blur'], args['--out'], args['--plot']) except Exception as e: print(e) if __name__ == "__main__": main()