Spaces:
Sleeping
Sleeping
Upload 5 files
Browse files- app.py +87 -0
- model.py +113 -0
- preprocess.py +37 -0
- requirements.txt +0 -0
- vintern_fast.py +201 -0
app.py
ADDED
|
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# app.py
|
| 2 |
+
import os
|
| 3 |
+
import time
|
| 4 |
+
from typing import Tuple
|
| 5 |
+
|
| 6 |
+
import gradio as gr
|
| 7 |
+
from PIL import Image
|
| 8 |
+
import torch
|
| 9 |
+
|
| 10 |
+
from model import OCRModel
|
| 11 |
+
from preprocess import crop_by_region, to_tensor_one_tile # dùng hàm sẵn có của bạn
|
| 12 |
+
|
| 13 |
+
MODEL_ID = "5CD-AI/Vintern-1B-v3_5"
|
| 14 |
+
|
| 15 |
+
# CPU free-tier -> allow_flash_attn=False; GPU A10G có thể bật True
|
| 16 |
+
ocr_model = OCRModel(model_id=MODEL_ID, allow_flash_attn=False)
|
| 17 |
+
|
| 18 |
+
DEFAULT_PROMPT = "Chỉ trả về đúng nội dung văn bản nhìn thấy trong ảnh (không thêm giải thích)."
|
| 19 |
+
REGIONS = ["full", "head", "body", "foot"]
|
| 20 |
+
PRESETS = ["fast", "quality"]
|
| 21 |
+
|
| 22 |
+
def ensure_model_loaded():
|
| 23 |
+
if not ocr_model.is_loaded:
|
| 24 |
+
ocr_model.load()
|
| 25 |
+
|
| 26 |
+
def run_ocr(
|
| 27 |
+
image: Image.Image,
|
| 28 |
+
region: str,
|
| 29 |
+
preset: str,
|
| 30 |
+
prompt: str,
|
| 31 |
+
max_new_tokens: int
|
| 32 |
+
):
|
| 33 |
+
if image is None:
|
| 34 |
+
return "⚠️ Chưa chọn ảnh."
|
| 35 |
+
|
| 36 |
+
ensure_model_loaded()
|
| 37 |
+
|
| 38 |
+
# 1) Cắt vùng theo tham số (giống logic Flask cũ của bạn)
|
| 39 |
+
pil = crop_by_region(image, region=region, head_ratio=0.28, foot_ratio=0.22)
|
| 40 |
+
|
| 41 |
+
# 2) Đưa về tensor (1 tile / 448)
|
| 42 |
+
px = to_tensor_one_tile(pil, input_size=448)
|
| 43 |
+
|
| 44 |
+
# 3) Đồng bộ device & dtype với model (QUAN TRỌNG để tránh lỗi float/half)
|
| 45 |
+
model_dtype = next(ocr_model.model.parameters()).dtype
|
| 46 |
+
px = px.to(device=ocr_model.device, dtype=model_dtype)
|
| 47 |
+
|
| 48 |
+
# 4) Tham số sinh text
|
| 49 |
+
if preset == "fast":
|
| 50 |
+
gen = dict(max_new_tokens=min(512, max_new_tokens),
|
| 51 |
+
do_sample=False, num_beams=1, repetition_penalty=1.05)
|
| 52 |
+
else:
|
| 53 |
+
gen = dict(max_new_tokens=max_new_tokens,
|
| 54 |
+
do_sample=False, num_beams=1, repetition_penalty=1.10)
|
| 55 |
+
|
| 56 |
+
question = f"<image>\n{(prompt or DEFAULT_PROMPT).strip()}\n"
|
| 57 |
+
|
| 58 |
+
t0 = time.time()
|
| 59 |
+
text = ocr_model.chat(px, question, **gen)
|
| 60 |
+
dt = time.time() - t0
|
| 61 |
+
|
| 62 |
+
return f"{text}\n\n— elapsed: {dt:.2f}s | device: {ocr_model.device_str}"
|
| 63 |
+
|
| 64 |
+
with gr.Blocks(title="OCR Demo (Gradio)") as demo:
|
| 65 |
+
gr.Markdown(
|
| 66 |
+
"# OCR Demo (Gradio)\n"
|
| 67 |
+
"Upload ảnh giấy tờ → chọn **vùng** → bấm **Extract**.\n"
|
| 68 |
+
f"Model: `{MODEL_ID}`"
|
| 69 |
+
)
|
| 70 |
+
|
| 71 |
+
with gr.Row():
|
| 72 |
+
with gr.Column(scale=1):
|
| 73 |
+
inp_img = gr.Image(type="pil", label="Ảnh", sources=["upload", "clipboard"])
|
| 74 |
+
region = gr.Radio(REGIONS, value="full", label="Vùng cắt")
|
| 75 |
+
preset = gr.Radio(PRESETS, value="fast", label="Chế độ")
|
| 76 |
+
with gr.Column(scale=1):
|
| 77 |
+
prompt = gr.Textbox(value=DEFAULT_PROMPT, label="Prompt", lines=3)
|
| 78 |
+
max_tokens = gr.Slider(16, 512, value=128, step=8, label="max_new_tokens")
|
| 79 |
+
btn = gr.Button("Extract nội dung", variant="primary")
|
| 80 |
+
out = gr.Textbox(label="Kết quả OCR", lines=18)
|
| 81 |
+
|
| 82 |
+
btn.click(run_ocr, [inp_img, region, preset, prompt, max_tokens], [out])
|
| 83 |
+
|
| 84 |
+
if __name__ == "__main__":
|
| 85 |
+
# Local: mở http://127.0.0.1:7860
|
| 86 |
+
# Trên Hugging Face: không cần chỉnh — Spaces sẽ tự bind PORT
|
| 87 |
+
demo.launch()
|
model.py
ADDED
|
@@ -0,0 +1,113 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# model.py
|
| 2 |
+
import torch
|
| 3 |
+
from transformers import AutoModel, AutoTokenizer, GenerationConfig
|
| 4 |
+
|
| 5 |
+
class OCRModel:
|
| 6 |
+
def __init__(
|
| 7 |
+
self,
|
| 8 |
+
model_id: str = "5CD-AI/Vintern-1B-v3_5",
|
| 9 |
+
allow_flash_attn: bool = False,
|
| 10 |
+
prefer_bfloat16: bool = False,
|
| 11 |
+
):
|
| 12 |
+
self.model_id = model_id
|
| 13 |
+
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 14 |
+
if self.device.type == "cuda":
|
| 15 |
+
if prefer_bfloat16 and torch.cuda.is_bf16_supported():
|
| 16 |
+
self.dtype = torch.bfloat16
|
| 17 |
+
else:
|
| 18 |
+
self.dtype = torch.float16
|
| 19 |
+
else:
|
| 20 |
+
self.dtype = torch.float32
|
| 21 |
+
|
| 22 |
+
self.allow_flash_attn = bool(allow_flash_attn and self.device.type == "cuda")
|
| 23 |
+
self.model = None
|
| 24 |
+
self.tokenizer = None
|
| 25 |
+
self.is_loaded = False
|
| 26 |
+
|
| 27 |
+
@property
|
| 28 |
+
def on_cuda(self): return self.device.type == "cuda"
|
| 29 |
+
@property
|
| 30 |
+
def device_str(self): return f"{self.device} ({str(self.dtype)})"
|
| 31 |
+
|
| 32 |
+
def load(self):
|
| 33 |
+
self.tokenizer = AutoTokenizer.from_pretrained(self.model_id, trust_remote_code=True)
|
| 34 |
+
# ưu tiên API mới (dtype=), fallback torch_dtype nếu cần
|
| 35 |
+
try:
|
| 36 |
+
self.model = AutoModel.from_pretrained(
|
| 37 |
+
self.model_id, dtype=self.dtype, trust_remote_code=True
|
| 38 |
+
)
|
| 39 |
+
except TypeError:
|
| 40 |
+
self.model = AutoModel.from_pretrained(
|
| 41 |
+
self.model_id, torch_dtype=self.dtype, trust_remote_code=True
|
| 42 |
+
)
|
| 43 |
+
self.model.to(device=self.device, dtype=self.dtype)
|
| 44 |
+
self.model.eval()
|
| 45 |
+
|
| 46 |
+
if not hasattr(self.model, "generation_config") or self.model.generation_config is None:
|
| 47 |
+
self.model.generation_config = GenerationConfig()
|
| 48 |
+
self.is_loaded = True
|
| 49 |
+
|
| 50 |
+
def _build_gen_dict(self, **gen_kwargs) -> dict:
|
| 51 |
+
"""
|
| 52 |
+
Trả về generation_config dạng DICT theo kỳ vọng của InternVLChatModel.chat(),
|
| 53 |
+
và LOẠI các khóa có thể bị truyền trùng trong .generate(...)
|
| 54 |
+
"""
|
| 55 |
+
# base từ GenerationConfig hiện có
|
| 56 |
+
if hasattr(self.model, "generation_config") and self.model.generation_config is not None:
|
| 57 |
+
try:
|
| 58 |
+
base = self.model.generation_config.to_dict()
|
| 59 |
+
except Exception:
|
| 60 |
+
base = {}
|
| 61 |
+
else:
|
| 62 |
+
base = {}
|
| 63 |
+
|
| 64 |
+
# gộp tham số từ UI
|
| 65 |
+
for k, v in (gen_kwargs or {}).items():
|
| 66 |
+
base[k] = v
|
| 67 |
+
|
| 68 |
+
# Bổ sung token ids nếu thiếu
|
| 69 |
+
if "eos_token_id" not in base and hasattr(self.tokenizer, "eos_token_id"):
|
| 70 |
+
base["eos_token_id"] = self.tokenizer.eos_token_id
|
| 71 |
+
if "pad_token_id" not in base:
|
| 72 |
+
pad_id = getattr(self.tokenizer, "pad_token_id", None)
|
| 73 |
+
base["pad_token_id"] = pad_id if pad_id is not None else base.get("eos_token_id", None)
|
| 74 |
+
if "bos_token_id" not in base and hasattr(self.tokenizer, "bos_token_id"):
|
| 75 |
+
base["bos_token_id"] = self.tokenizer.bos_token_id
|
| 76 |
+
|
| 77 |
+
# ép kiểu int cho *_token_id
|
| 78 |
+
for key in ("eos_token_id", "pad_token_id", "bos_token_id"):
|
| 79 |
+
if key in base and base[key] is not None:
|
| 80 |
+
try:
|
| 81 |
+
base[key] = int(base[key])
|
| 82 |
+
except Exception:
|
| 83 |
+
pass
|
| 84 |
+
|
| 85 |
+
# 🚫 LOẠI các khóa dễ bị “multiple values”
|
| 86 |
+
for bad in ("use_cache", "output_attentions", "output_hidden_states",
|
| 87 |
+
"return_dict_in_generate", "synced_gpus"):
|
| 88 |
+
base.pop(bad, None)
|
| 89 |
+
|
| 90 |
+
return base
|
| 91 |
+
|
| 92 |
+
def chat(self, pixel_values: torch.Tensor, question: str, **gen_kwargs) -> str:
|
| 93 |
+
if not self.is_loaded:
|
| 94 |
+
self.load()
|
| 95 |
+
|
| 96 |
+
# đồng bộ dtype/device input với model
|
| 97 |
+
model_dtype = next(self.model.parameters()).dtype
|
| 98 |
+
pixel_values = pixel_values.to(device=self.device, dtype=model_dtype)
|
| 99 |
+
|
| 100 |
+
# DICT sạch cho generation_config
|
| 101 |
+
gen_dict = self._build_gen_dict(**gen_kwargs)
|
| 102 |
+
|
| 103 |
+
# gọi chat: yêu cầu tokenizer + generation_config (DICT)
|
| 104 |
+
out = self.model.chat(
|
| 105 |
+
pixel_values=pixel_values,
|
| 106 |
+
question=question,
|
| 107 |
+
tokenizer=self.tokenizer,
|
| 108 |
+
generation_config=gen_dict,
|
| 109 |
+
)
|
| 110 |
+
|
| 111 |
+
if isinstance(out, (list, tuple)) and len(out) >= 1:
|
| 112 |
+
return out[0]
|
| 113 |
+
return out
|
preprocess.py
ADDED
|
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from PIL import Image
|
| 2 |
+
import torchvision.transforms as T
|
| 3 |
+
from torchvision.transforms.functional import InterpolationMode
|
| 4 |
+
import torch
|
| 5 |
+
|
| 6 |
+
IMAGENET_MEAN = (0.485, 0.456, 0.406)
|
| 7 |
+
IMAGENET_STD = (0.229, 0.224, 0.225)
|
| 8 |
+
DEFAULT_INPUT_SIZE = 448
|
| 9 |
+
|
| 10 |
+
def build_transform(input_size: int) -> T.Compose:
|
| 11 |
+
return T.Compose([
|
| 12 |
+
T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
|
| 13 |
+
T.Resize((input_size, input_size), interpolation=InterpolationMode.BILINEAR),
|
| 14 |
+
T.ToTensor(),
|
| 15 |
+
T.Normalize(mean=IMAGENET_MEAN, std=IMAGENET_STD),
|
| 16 |
+
])
|
| 17 |
+
|
| 18 |
+
def crop_regions(pil_img: Image.Image, head_ratio=0.28, foot_ratio=0.22):
|
| 19 |
+
w, h = pil_img.size
|
| 20 |
+
head_h = int(h * head_ratio)
|
| 21 |
+
foot_h = int(h * foot_ratio)
|
| 22 |
+
head = pil_img.crop((0, 0, w, head_h))
|
| 23 |
+
foot = pil_img.crop((0, h - foot_h, w, h))
|
| 24 |
+
body = pil_img.crop((0, head_h, w, h - foot_h))
|
| 25 |
+
return head, body, foot
|
| 26 |
+
|
| 27 |
+
def crop_by_region(pil_img: Image.Image, region: str, head_ratio=0.28, foot_ratio=0.22) -> Image.Image:
|
| 28 |
+
r = (region or "full").lower()
|
| 29 |
+
if r == "full": return pil_img
|
| 30 |
+
head, body, foot = crop_regions(pil_img, head_ratio=head_ratio, foot_ratio=foot_ratio)
|
| 31 |
+
return {"head": head, "body": body, "foot": foot}.get(r, pil_img)
|
| 32 |
+
|
| 33 |
+
def to_tensor_one_tile(pil_img: Image.Image, input_size=DEFAULT_INPUT_SIZE, pin_memory=False) -> torch.Tensor:
|
| 34 |
+
transform = build_transform(input_size=input_size)
|
| 35 |
+
t = transform(pil_img).unsqueeze(0)
|
| 36 |
+
if pin_memory: t = t.pin_memory()
|
| 37 |
+
return t
|
requirements.txt
ADDED
|
Binary file (2.4 kB). View file
|
|
|
vintern_fast.py
ADDED
|
@@ -0,0 +1,201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
import torch
|
| 3 |
+
import torchvision.transforms as T
|
| 4 |
+
from PIL import Image
|
| 5 |
+
from torchvision.transforms.functional import InterpolationMode
|
| 6 |
+
from transformers import AutoModel, AutoTokenizer
|
| 7 |
+
import time
|
| 8 |
+
import argparse
|
| 9 |
+
import sys
|
| 10 |
+
"""
|
| 11 |
+
url: https://huggingface.co/5CD-AI/Vintern-1B-v3_5
|
| 12 |
+
"""
|
| 13 |
+
# Ensure UTF-8 console output (fixes UnicodeEncodeError on Windows PowerShell)
|
| 14 |
+
try:
|
| 15 |
+
sys.stdout.reconfigure(encoding='utf-8')
|
| 16 |
+
sys.stderr.reconfigure(encoding='utf-8')
|
| 17 |
+
except Exception:
|
| 18 |
+
pass
|
| 19 |
+
# pip install ninja packaging wheel
|
| 20 |
+
# pip install flash-attn --no-build-isolation
|
| 21 |
+
# Khởi tạo timer
|
| 22 |
+
start_time = time.time()
|
| 23 |
+
|
| 24 |
+
# Chọn device (GPU nếu có)
|
| 25 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 26 |
+
|
| 27 |
+
# Runtime backend optimizations
|
| 28 |
+
torch.backends.cudnn.benchmark = True
|
| 29 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
| 30 |
+
torch.backends.cudnn.allow_tf32 = True
|
| 31 |
+
|
| 32 |
+
print("Using device:", device)
|
| 33 |
+
|
| 34 |
+
IMAGENET_MEAN = (0.485, 0.456, 0.406)
|
| 35 |
+
IMAGENET_STD = (0.229, 0.224, 0.225)
|
| 36 |
+
|
| 37 |
+
def build_transform(input_size):
|
| 38 |
+
return T.Compose([
|
| 39 |
+
T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
|
| 40 |
+
T.Resize((input_size, input_size), interpolation=InterpolationMode.BILINEAR),
|
| 41 |
+
T.ToTensor(),
|
| 42 |
+
T.Normalize(mean=IMAGENET_MEAN, std=IMAGENET_STD)
|
| 43 |
+
])
|
| 44 |
+
|
| 45 |
+
def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
|
| 46 |
+
best_ratio_diff = float('inf')
|
| 47 |
+
best_ratio = (1, 1)
|
| 48 |
+
area = width * height
|
| 49 |
+
for ratio in target_ratios:
|
| 50 |
+
target_aspect_ratio = ratio[0] / ratio[1]
|
| 51 |
+
ratio_diff = abs(aspect_ratio - target_aspect_ratio)
|
| 52 |
+
if ratio_diff < best_ratio_diff:
|
| 53 |
+
best_ratio_diff = ratio_diff
|
| 54 |
+
best_ratio = ratio
|
| 55 |
+
elif ratio_diff == best_ratio_diff:
|
| 56 |
+
if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
|
| 57 |
+
best_ratio = ratio
|
| 58 |
+
return best_ratio
|
| 59 |
+
|
| 60 |
+
def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbnail=False):
|
| 61 |
+
orig_width, orig_height = image.size
|
| 62 |
+
aspect_ratio = orig_width / orig_height
|
| 63 |
+
|
| 64 |
+
target_ratios = set(
|
| 65 |
+
(i, j) for n in range(min_num, max_num + 1)
|
| 66 |
+
for i in range(1, n + 1)
|
| 67 |
+
for j in range(1, n + 1)
|
| 68 |
+
if i * j <= max_num and i * j >= min_num
|
| 69 |
+
)
|
| 70 |
+
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
|
| 71 |
+
|
| 72 |
+
target_aspect_ratio = find_closest_aspect_ratio(
|
| 73 |
+
aspect_ratio, target_ratios, orig_width, orig_height, image_size)
|
| 74 |
+
|
| 75 |
+
target_width = image_size * target_aspect_ratio[0]
|
| 76 |
+
target_height = image_size * target_aspect_ratio[1]
|
| 77 |
+
blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
|
| 78 |
+
|
| 79 |
+
resized_img = image.resize((target_width, target_height))
|
| 80 |
+
processed_images = []
|
| 81 |
+
for i in range(blocks):
|
| 82 |
+
box = (
|
| 83 |
+
(i % (target_width // image_size)) * image_size,
|
| 84 |
+
(i // (target_width // image_size)) * image_size,
|
| 85 |
+
((i % (target_width // image_size)) + 1) * image_size,
|
| 86 |
+
((i // (target_width // image_size)) + 1) * image_size
|
| 87 |
+
)
|
| 88 |
+
split_img = resized_img.crop(box)
|
| 89 |
+
processed_images.append(split_img)
|
| 90 |
+
assert len(processed_images) == blocks
|
| 91 |
+
|
| 92 |
+
if use_thumbnail and len(processed_images) != 1:
|
| 93 |
+
thumbnail_img = image.resize((image_size, image_size))
|
| 94 |
+
processed_images.append(thumbnail_img)
|
| 95 |
+
return processed_images
|
| 96 |
+
|
| 97 |
+
def load_image(image_file, input_size=448, max_num=12, use_thumbnail=False, pin_memory=False):
|
| 98 |
+
image = Image.open(image_file).convert('RGB')
|
| 99 |
+
transform = build_transform(input_size=input_size)
|
| 100 |
+
# Fast path when using only one tile and no thumbnail
|
| 101 |
+
if max_num == 1 and not use_thumbnail:
|
| 102 |
+
pixel_values = transform(image).unsqueeze(0)
|
| 103 |
+
else:
|
| 104 |
+
images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=use_thumbnail, max_num=max_num)
|
| 105 |
+
pixel_values = [transform(img) for img in images]
|
| 106 |
+
pixel_values = torch.stack(pixel_values)
|
| 107 |
+
if pin_memory:
|
| 108 |
+
pixel_values = pixel_values.pin_memory()
|
| 109 |
+
return pixel_values
|
| 110 |
+
|
| 111 |
+
# Load model lên GPU
|
| 112 |
+
model_load_start = time.time()
|
| 113 |
+
model = AutoModel.from_pretrained(
|
| 114 |
+
"5CD-AI/Vintern-1B-v3_5",
|
| 115 |
+
torch_dtype=torch.float16,
|
| 116 |
+
low_cpu_mem_usage=True,
|
| 117 |
+
trust_remote_code=True,
|
| 118 |
+
use_flash_attn=True, # nếu đã cài flash-attn có thể đổi thành True
|
| 119 |
+
).to(device).eval()
|
| 120 |
+
model_load_end = time.time()
|
| 121 |
+
|
| 122 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
| 123 |
+
"5CD-AI/Vintern-1B-v3_5",
|
| 124 |
+
trust_remote_code=True,
|
| 125 |
+
use_fast=False
|
| 126 |
+
)
|
| 127 |
+
|
| 128 |
+
def main():
|
| 129 |
+
parser = argparse.ArgumentParser()
|
| 130 |
+
parser.add_argument('--image', type=str, default=r'C:\Users\ADMIN\Downloads\vintern_api\imgs\6.TKngknhnCMC_00001.png')
|
| 131 |
+
parser.add_argument('--input_size', type=int, default=384)
|
| 132 |
+
parser.add_argument('--max_num', type=int, default=1)
|
| 133 |
+
parser.add_argument('--use_thumbnail', action='store_true', default=False)
|
| 134 |
+
parser.add_argument('--max_new_tokens', type=int, default=128)
|
| 135 |
+
parser.add_argument('--num_beams', type=int, default=1)
|
| 136 |
+
parser.add_argument('--do_sample', action='store_true', default=False)
|
| 137 |
+
parser.add_argument('--repetition_penalty', type=float, default=2.5)
|
| 138 |
+
parser.add_argument('--question', type=str, default='<image>\nTrích xuất thông tin chính trong ảnh và trả về dạng markdown.')
|
| 139 |
+
parser.add_argument('--compile', action='store_true', default=False)
|
| 140 |
+
args = parser.parse_args()
|
| 141 |
+
|
| 142 |
+
pin_mem = device.type == 'cuda'
|
| 143 |
+
|
| 144 |
+
# Validate input size for this model family (fallback to 448 if incompatible)
|
| 145 |
+
valid_input_size = args.input_size
|
| 146 |
+
try:
|
| 147 |
+
# Many InternVL/Vintern checkpoints expect 448 per tile
|
| 148 |
+
if args.input_size != 448:
|
| 149 |
+
print(f"[warn] input_size {args.input_size} may be incompatible; falling back to 448 for stability.")
|
| 150 |
+
valid_input_size = 448
|
| 151 |
+
except Exception:
|
| 152 |
+
valid_input_size = 448
|
| 153 |
+
|
| 154 |
+
# Image preprocessing and non-blocking GPU transfer
|
| 155 |
+
pixel_values = load_image(
|
| 156 |
+
args.image,
|
| 157 |
+
input_size=valid_input_size,
|
| 158 |
+
max_num=args.max_num,
|
| 159 |
+
use_thumbnail=args.use_thumbnail,
|
| 160 |
+
pin_memory=pin_mem
|
| 161 |
+
)
|
| 162 |
+
pixel_values = pixel_values.contiguous(memory_format=torch.channels_last)
|
| 163 |
+
pixel_values = pixel_values.to(device=device, dtype=torch.float16, non_blocking=True)
|
| 164 |
+
|
| 165 |
+
# Optional compile for speedup (PyTorch 2.x). Fallback silently if unsupported.
|
| 166 |
+
if args.compile:
|
| 167 |
+
try:
|
| 168 |
+
model_forward = model.forward
|
| 169 |
+
model.forward = torch.compile(model_forward, mode='reduce-overhead', fullgraph=False) # type: ignore
|
| 170 |
+
except Exception:
|
| 171 |
+
pass
|
| 172 |
+
|
| 173 |
+
generation_config = dict(
|
| 174 |
+
max_new_tokens=args.max_new_tokens,
|
| 175 |
+
do_sample=args.do_sample,
|
| 176 |
+
num_beams=args.num_beams,
|
| 177 |
+
repetition_penalty=args.repetition_penalty
|
| 178 |
+
)
|
| 179 |
+
|
| 180 |
+
with torch.inference_mode():
|
| 181 |
+
response, history = model.chat(
|
| 182 |
+
tokenizer,
|
| 183 |
+
pixel_values,
|
| 184 |
+
args.question,
|
| 185 |
+
generation_config,
|
| 186 |
+
history=None,
|
| 187 |
+
return_history=True
|
| 188 |
+
)
|
| 189 |
+
|
| 190 |
+
print(f'User: {args.question}\nAssistant: {response}')
|
| 191 |
+
|
| 192 |
+
end_time = time.time()
|
| 193 |
+
print(f'Model load: {model_load_end - model_load_start:.2f}s | Total: {end_time - start_time:.2f}s')
|
| 194 |
+
|
| 195 |
+
del pixel_values
|
| 196 |
+
if device.type == 'cuda':
|
| 197 |
+
torch.cuda.empty_cache()
|
| 198 |
+
|
| 199 |
+
|
| 200 |
+
if __name__ == '__main__':
|
| 201 |
+
main()
|