import numpy as np import torch import torchvision.transforms as T from PIL import Image from torchvision.transforms.functional import InterpolationMode from transformers import AutoModel, AutoTokenizer import time import argparse import sys """ url: https://huggingface.co/5CD-AI/Vintern-1B-v3_5 """ # Ensure UTF-8 console output (fixes UnicodeEncodeError on Windows PowerShell) try: sys.stdout.reconfigure(encoding='utf-8') sys.stderr.reconfigure(encoding='utf-8') except Exception: pass # pip install ninja packaging wheel # pip install flash-attn --no-build-isolation # Khởi tạo timer start_time = time.time() # Chọn device (GPU nếu có) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # Runtime backend optimizations torch.backends.cudnn.benchmark = True torch.backends.cuda.matmul.allow_tf32 = True torch.backends.cudnn.allow_tf32 = True print("Using device:", device) IMAGENET_MEAN = (0.485, 0.456, 0.406) IMAGENET_STD = (0.229, 0.224, 0.225) def build_transform(input_size): return T.Compose([ T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img), T.Resize((input_size, input_size), interpolation=InterpolationMode.BILINEAR), T.ToTensor(), T.Normalize(mean=IMAGENET_MEAN, std=IMAGENET_STD) ]) def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size): best_ratio_diff = float('inf') best_ratio = (1, 1) area = width * height for ratio in target_ratios: target_aspect_ratio = ratio[0] / ratio[1] ratio_diff = abs(aspect_ratio - target_aspect_ratio) if ratio_diff < best_ratio_diff: best_ratio_diff = ratio_diff best_ratio = ratio elif ratio_diff == best_ratio_diff: if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]: best_ratio = ratio return best_ratio def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbnail=False): orig_width, orig_height = image.size aspect_ratio = orig_width / orig_height target_ratios = set( (i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if i * j <= max_num and i * j >= min_num ) target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1]) target_aspect_ratio = find_closest_aspect_ratio( aspect_ratio, target_ratios, orig_width, orig_height, image_size) target_width = image_size * target_aspect_ratio[0] target_height = image_size * target_aspect_ratio[1] blocks = target_aspect_ratio[0] * target_aspect_ratio[1] resized_img = image.resize((target_width, target_height)) processed_images = [] for i in range(blocks): box = ( (i % (target_width // image_size)) * image_size, (i // (target_width // image_size)) * image_size, ((i % (target_width // image_size)) + 1) * image_size, ((i // (target_width // image_size)) + 1) * image_size ) split_img = resized_img.crop(box) processed_images.append(split_img) assert len(processed_images) == blocks if use_thumbnail and len(processed_images) != 1: thumbnail_img = image.resize((image_size, image_size)) processed_images.append(thumbnail_img) return processed_images def load_image(image_file, input_size=448, max_num=12, use_thumbnail=False, pin_memory=False): image = Image.open(image_file).convert('RGB') transform = build_transform(input_size=input_size) # Fast path when using only one tile and no thumbnail if max_num == 1 and not use_thumbnail: pixel_values = transform(image).unsqueeze(0) else: images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=use_thumbnail, max_num=max_num) pixel_values = [transform(img) for img in images] pixel_values = torch.stack(pixel_values) if pin_memory: pixel_values = pixel_values.pin_memory() return pixel_values # Load model lên GPU model_load_start = time.time() model = AutoModel.from_pretrained( "5CD-AI/Vintern-1B-v3_5", torch_dtype=torch.float16, low_cpu_mem_usage=True, trust_remote_code=True, use_flash_attn=True, # nếu đã cài flash-attn có thể đổi thành True ).to(device).eval() model_load_end = time.time() tokenizer = AutoTokenizer.from_pretrained( "5CD-AI/Vintern-1B-v3_5", trust_remote_code=True, use_fast=False ) def main(): parser = argparse.ArgumentParser() parser.add_argument('--image', type=str, default=r'C:\Users\ADMIN\Downloads\vintern_api\imgs\6.TKngknhnCMC_00001.png') parser.add_argument('--input_size', type=int, default=384) parser.add_argument('--max_num', type=int, default=1) parser.add_argument('--use_thumbnail', action='store_true', default=False) parser.add_argument('--max_new_tokens', type=int, default=128) parser.add_argument('--num_beams', type=int, default=1) parser.add_argument('--do_sample', action='store_true', default=False) parser.add_argument('--repetition_penalty', type=float, default=2.5) parser.add_argument('--question', type=str, default='\nTrích xuất thông tin chính trong ảnh và trả về dạng markdown.') parser.add_argument('--compile', action='store_true', default=False) args = parser.parse_args() pin_mem = device.type == 'cuda' # Validate input size for this model family (fallback to 448 if incompatible) valid_input_size = args.input_size try: # Many InternVL/Vintern checkpoints expect 448 per tile if args.input_size != 448: print(f"[warn] input_size {args.input_size} may be incompatible; falling back to 448 for stability.") valid_input_size = 448 except Exception: valid_input_size = 448 # Image preprocessing and non-blocking GPU transfer pixel_values = load_image( args.image, input_size=valid_input_size, max_num=args.max_num, use_thumbnail=args.use_thumbnail, pin_memory=pin_mem ) pixel_values = pixel_values.contiguous(memory_format=torch.channels_last) pixel_values = pixel_values.to(device=device, dtype=torch.float16, non_blocking=True) # Optional compile for speedup (PyTorch 2.x). Fallback silently if unsupported. if args.compile: try: model_forward = model.forward model.forward = torch.compile(model_forward, mode='reduce-overhead', fullgraph=False) # type: ignore except Exception: pass generation_config = dict( max_new_tokens=args.max_new_tokens, do_sample=args.do_sample, num_beams=args.num_beams, repetition_penalty=args.repetition_penalty ) with torch.inference_mode(): response, history = model.chat( tokenizer, pixel_values, args.question, generation_config, history=None, return_history=True ) print(f'User: {args.question}\nAssistant: {response}') end_time = time.time() print(f'Model load: {model_load_end - model_load_start:.2f}s | Total: {end_time - start_time:.2f}s') del pixel_values if device.type == 'cuda': torch.cuda.empty_cache() if __name__ == '__main__': main()