Spaces:
Sleeping
Sleeping
File size: 1,462 Bytes
d52ffdf adef3c4 2a81121 d52ffdf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 |
import os
import whisper
from groq import Groq
from diffusers import StableDiffusionPipeline
import gradio as gr
import torch
# Load Whisper model
whisper_model = whisper.load_model("base")
GROQ_API_KEY="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"
client=Groq(api_key=GROQ_API_KEY)
# Load Stable Diffusion pipeline
device = "cuda" if torch.cuda.is_available() else "cpu"
stable_diffusion_model = StableDiffusionPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5"
).to(device)
# Function to handle voice-to-image pipeline
def voice_to_image(audio):
# Step 1: Transcribe audio to text using Whisper
transcription = whisper_model.transcribe(audio)
input_text = transcription["text"]
# Step 2: Query LLM using Groq API
chat_completion = client.chat.completions.create(
messages=[
{"role": "user", "content": input_text},
],
model="llama3-8b-8192",
stream=False,
)
response_text = chat_completion.choices[0].message.content
# Step 3: Generate image using Stable Diffusion
image = stable_diffusion_model(response_text).images[0]
return image
# Gradio Interface
interface = gr.Interface(
fn=voice_to_image,
inputs=gr.Audio(type="filepath"),
outputs="image",
title="Voice-to-Image Generator",
description="Transcribe voice input into an image using Whisper, Groq LLM, and Stable Diffusion."
)
# Launch Gradio app
interface.launch() |