Spaces:
Running
Running
File size: 43,196 Bytes
2e237ce |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 |
{
"cells": [
{
"cell_type": "markdown",
"id": "d15dad13-9732-4e4c-bbd1-1a33545a4293",
"metadata": {},
"source": [
"## Overview"
]
},
{
"cell_type": "markdown",
"id": "6f857fc7-d7fb-4b05-a242-de31fb1f086d",
"metadata": {},
"source": [
"In this notebook, we'll go through the process of fine-tuning the LightGBM models in the `pdf-document-layout-analysis` service."
]
},
{
"cell_type": "markdown",
"id": "0c96b645-eef0-47a2-8c4f-284cdc05e76d",
"metadata": {},
"source": [
"But before doing that, let's start with some basic concepts and introduce modules and methods to make the process easier and cleaner."
]
},
{
"cell_type": "markdown",
"id": "f1e5c19b-1920-4f2c-9994-943626cd8a58",
"metadata": {},
"source": [
"To begin with, you should first ensure that `Poppler` is installed on your system. We will use it to process PDFs:"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "5f198930-caf1-4cb4-bb1e-8ca063ad8587",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"pdftohtml is already installed.\n"
]
}
],
"source": [
"%%bash\n",
"\n",
"if ! command -v pdftohtml &> /dev/null\n",
"then\n",
" echo \"pdftohtml is not installed. Installing now...\"\n",
" sudo apt install pdftohtml\n",
"else\n",
" echo \"pdftohtml is already installed.\"\n",
"fi"
]
},
{
"cell_type": "markdown",
"id": "5d971faa-e9a8-47d6-8c02-66be6f3a3c6c",
"metadata": {},
"source": [
"We use Poppler to convert PDFs to XMLs. To work with Poppler in Python, we have created `PdfFeatures` module, which can be found in `pdf_features/PdfFeatures.py`."
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "f7ac5d42-fb70-4476-8e05-b159f18ae3dd",
"metadata": {},
"outputs": [],
"source": [
"from pdf_features.PdfFeatures import PdfFeatures"
]
},
{
"cell_type": "markdown",
"id": "e45522eb-6879-472a-a822-64b38041ccc3",
"metadata": {},
"source": [
"To open a PDF file with PdfFeatures module, simply write:"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "e4ac53e5-b249-4dcd-beeb-e3009e17079b",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Page-1\n",
"Page-2\n"
]
}
],
"source": [
"pdf_features: PdfFeatures = PdfFeatures.from_pdf_path(\"test_pdfs/regular.pdf\")"
]
},
{
"cell_type": "markdown",
"id": "2c7c6241-9016-4416-a53e-644145f9063a",
"metadata": {},
"source": [
"When you open `pdf_features` like this, the XML file is saved in a temporary path and handled on the fly.\n",
"\n",
"If you want to save the XML file, you should provide a path where it can be saved:"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "eb1056ee-2e45-4b12-b2bc-8d23553c2143",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Page-1\n",
"Page-2\n"
]
}
],
"source": [
"pdf_features: PdfFeatures = PdfFeatures.from_pdf_path(\"test_pdfs/regular.pdf\", \"test_pdfs/regular.xml\")"
]
},
{
"cell_type": "markdown",
"id": "703ec555-c3a5-4e7e-a6dd-886be67cb6de",
"metadata": {},
"source": [
"Here is a part of the XML to illustrate what it looks like:"
]
},
{
"cell_type": "markdown",
"id": "5b6fcebd-f91b-43fe-b2d6-b9956c3fd173",
"metadata": {},
"source": [
"```\n",
"<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n",
"<!DOCTYPE pdf2xml SYSTEM \"pdf2xml.dtd\">\n",
"\n",
"<pdf2xml producer=\"poppler\" version=\"23.04.0\">\n",
"<page number=\"1\" position=\"absolute\" top=\"0\" left=\"0\" height=\"842\" width=\"595\">\n",
"\t<fontspec id=\"0\" size=\"10\" family=\"JOIBEJ+Verdana\" color=\"#000000\"/>\n",
"\t<fontspec id=\"1\" size=\"10\" family=\"JOIBGK+Verdana\" color=\"#000000\"/>\n",
"<text top=\"106\" left=\"244\" width=\"111\" height=\"12\" font=\"0\"><b>RESOLUCIΓN DE LA </b></text>\n",
"<text top=\"118\" left=\"157\" width=\"284\" height=\"12\" font=\"0\"><b>CORTE INTERAMERICANA DE DERECHOS HUMANOS </b></text>\n",
"<text top=\"129\" left=\"227\" width=\"145\" height=\"12\" font=\"0\"><b>DEL 29 DE JULIO DE 1991 </b></text>\n",
"<text top=\"141\" left=\"298\" width=\"3\" height=\"12\" font=\"0\"><b> </b></text>\n",
"<text top=\"153\" left=\"298\" width=\"3\" height=\"12\" font=\"0\"><b> </b></text>\n",
"<text top=\"165\" left=\"132\" width=\"334\" height=\"12\" font=\"0\"><b>MEDIDAS PROVISIONALES SOLICITADAS POR LA COMISIΓN </b></text>\n",
"<text top=\"177\" left=\"177\" width=\"245\" height=\"12\" font=\"0\"><b>INTERAMERICANA DE DERECHOS HUMANOS </b></text>\n",
"<text top=\"188\" left=\"225\" width=\"149\" height=\"12\" font=\"0\"><b>RESPECTO DE GUATEMALA </b></text>\n",
"\n",
"...\n",
"```"
]
},
{
"cell_type": "markdown",
"id": "4be01120-c4ce-4e09-bc10-64b1742c9b0b",
"metadata": {},
"source": [
"When we convert PDFs to XMLs with Poppler, it creates `tokens`. These tokens are generally lines of text, but they can vary according to Poppler's heuristics and what has been extracted. \n",
"A token can be a single character, empty string, or an entire line. Every `<text>` item you see above is a `token`."
]
},
{
"cell_type": "markdown",
"id": "00517165-bc84-4a6f-9a8b-91084cc603ab",
"metadata": {},
"source": [
"The PdfFeatures module provides basic capabilities for working with PDF files. Here are some features of this module. \n",
"You don't have to memorize them, but they can be useful for future reference:\n",
"\n",
"- Every PdfFeatures instance has `pages` attribute. This attribute includes a list of `PdfPage` elements to work with each of the pages.\n",
"- Every PdfPage element has attributes like `page_number`, `page_width`, `page_height` and `tokens`.\n",
"- The `tokens` attribute includes a list of `PdfToken` elements to work with each of the tokens within that page.\n",
"- Every PdfToken element has attributes like `content`, `bounding_box`, `token_type`, `page_number`.\n",
"- The `content` attribute is, as the name implies, the string content of the given token.\n",
"- The`bounding_box` attribute stores the position of the given token on the page.\n",
"- `bounding_box` is a `Rectangle` element. For example, if you want to get the left coordinate of the token, you can do so by typing `token.bounding_box.left`. It will return an integer value.\n",
"- `token_type` attribute is for keeping the type of the token. It's a `TokenType` element and you'll see more details about this one in the next sections.\n",
"- Like PdfPage items, tokens also have a `page_number` attribute to indicate which page they are on. This is useful in some scenarios."
]
},
{
"cell_type": "markdown",
"id": "63a71904-0ad3-4fca-830a-402d9334614a",
"metadata": {},
"source": [
"If you want to loop through the tokens of a file and check their contents you can use something like this:"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "444d3778-c3f5-48fd-aa20-cfe1bf851aad",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\u001B[96mRESOLUCIΓN DE LA\u001B[0m \u001B[93m[Page: 1 || Coordinates: [244, 106, 355, 118]]\u001B[0m\n",
"\u001B[96mCORTE INTERAMERICANA DE DERECHOS HUMANOS\u001B[0m \u001B[93m[Page: 1 || Coordinates: [157, 118, 441, 130]]\u001B[0m\n",
"\u001B[96mDEL 29 DE JULIO DE 1991\u001B[0m \u001B[93m[Page: 1 || Coordinates: [227, 129, 372, 141]]\u001B[0m\n",
"\u001B[96mMEDIDAS PROVISIONALES SOLICITADAS POR LA COMISIΓN\u001B[0m \u001B[93m[Page: 1 || Coordinates: [132, 165, 466, 177]]\u001B[0m\n",
"\u001B[96mINTERAMERICANA DE DERECHOS HUMANOS\u001B[0m \u001B[93m[Page: 1 || Coordinates: [177, 177, 422, 189]]\u001B[0m\n",
"\u001B[96mRESPECTO DE GUATEMALA\u001B[0m \u001B[93m[Page: 1 || Coordinates: [225, 188, 374, 200]]\u001B[0m\n",
"\u001B[96mCASO CHUNIMA\u001B[0m \u001B[93m[Page: 1 || Coordinates: [254, 224, 344, 236]]\u001B[0m\n",
"\u001B[96mLA CORTE INTERAMERICANA DE DERECHOS HUMANOS,\u001B[0m \u001B[93m[Page: 1 || Coordinates: [88, 259, 393, 271]]\u001B[0m\n",
"\u001B[96mVISTOS:\u001B[0m \u001B[93m[Page: 1 || Coordinates: [88, 295, 137, 307]]\u001B[0m\n",
"\u001B[96m1.\u001B[0m \u001B[93m[Page: 1 || Coordinates: [88, 318, 101, 330]]\u001B[0m\n",
"\u001B[96mLa resoluciΓ³n del Presidente de la Corte Interamericana de Derechos Humanos\u001B[0m \u001B[93m[Page: 1 || Coordinates: [122, 318, 511, 330]]\u001B[0m\n",
"\u001B[96mde 15 de julio de 1991, sobre medidas provisionales solicitadas por la ComisiΓ³n\u001B[0m \u001B[93m[Page: 1 || Coordinates: [88, 330, 514, 342]]\u001B[0m\n",
"\u001B[96mInteramericana de Derechos Humanos respecto de Guatemala;\u001B[0m \u001B[93m[Page: 1 || Coordinates: [88, 342, 401, 354]]\u001B[0m\n",
"\u001B[96m2.\u001B[0m \u001B[93m[Page: 1 || Coordinates: [88, 366, 102, 378]]\u001B[0m\n",
"\u001B[96mLa convocatoria a una audiencia pΓΊblica para el dΓa 29 de julio de 1991 a las\u001B[0m \u001B[93m[Page: 1 || Coordinates: [122, 366, 512, 378]]\u001B[0m\n",
"\u001B[96m3:00 p.m., contenida en la resoluciΓ³n citada;\u001B[0m \u001B[93m[Page: 1 || Coordinates: [88, 378, 312, 390]]\u001B[0m\n",
"\u001B[96m3.\u001B[0m \u001B[93m[Page: 1 || Coordinates: [88, 401, 104, 413]]\u001B[0m\n",
"\u001B[96mLos escritos de fechas 24 y 26 de este mes de julio presentados por el\u001B[0m \u001B[93m[Page: 1 || Coordinates: [122, 401, 514, 413]]\u001B[0m\n",
"\u001B[96mGobierno de Guatemala en los cuales informa que, en atenciΓ³n a la resoluciΓ³n del\u001B[0m \u001B[93m[Page: 1 || Coordinates: [88, 413, 513, 425]]\u001B[0m\n",
"\u001B[96mPresidente, ha tomado medidas dirigidas a la protecciΓ³n de las personas\u001B[0m \u001B[93m[Page: 1 || Coordinates: [88, 425, 518, 437]]\u001B[0m\n",
"\u001B[96mmencionadas en esa resoluciΓ³n y solicita un aplazamiento de por lo menos 30 dΓas de\u001B[0m \u001B[93m[Page: 1 || Coordinates: [88, 437, 512, 449]]\u001B[0m\n",
"\u001B[96mla audiencia convocada por el Presidente para hoy, a fin de contar con un plazo que\u001B[0m \u001B[93m[Page: 1 || Coordinates: [88, 448, 512, 460]]\u001B[0m\n",
"\u001B[96mle permita hacer una presentaciΓ³n adecuada ante la Corte.\u001B[0m \u001B[93m[Page: 1 || Coordinates: [88, 460, 380, 472]]\u001B[0m\n",
"\u001B[96mCONSIDERANDO:\u001B[0m \u001B[93m[Page: 1 || Coordinates: [88, 484, 189, 496]]\u001B[0m\n",
"\u001B[96m1.\u001B[0m \u001B[93m[Page: 1 || Coordinates: [88, 508, 101, 520]]\u001B[0m\n",
"\u001B[96mQue, en virtud del artΓculo 23.4 de su Reglamento, la Corte Interamericana de\u001B[0m \u001B[93m[Page: 1 || Coordinates: [122, 508, 511, 520]]\u001B[0m\n",
"\u001B[96mDerechos Humanos debe pronunciarse sobre la resoluciΓ³n del Presidente del 15 de\u001B[0m \u001B[93m[Page: 1 || Coordinates: [88, 519, 513, 531]]\u001B[0m\n",
"\u001B[96mjulio de 1991;\u001B[0m \u001B[93m[Page: 1 || Coordinates: [88, 531, 160, 543]]\u001B[0m\n",
"\u001B[96m2.\u001B[0m \u001B[93m[Page: 1 || Coordinates: [88, 555, 104, 567]]\u001B[0m\n",
"\u001B[96mQue, habida cuenta de que la Corte se encuentra reunida, debe tambiΓ©n\u001B[0m \u001B[93m[Page: 1 || Coordinates: [122, 555, 514, 567]]\u001B[0m\n",
"\u001B[96mdecidir sobre la peticiΓ³n de aplazamiento de la audiencia sobre medidas provisionales\u001B[0m \u001B[93m[Page: 1 || Coordinates: [88, 567, 512, 579]]\u001B[0m\n",
"\u001B[96mformuladas por el Gobierno de Guatemala.\u001B[0m \u001B[93m[Page: 1 || Coordinates: [88, 578, 300, 590]]\u001B[0m\n",
"\u001B[96mPOR TANTO:\u001B[0m \u001B[93m[Page: 1 || Coordinates: [88, 602, 159, 614]]\u001B[0m\n",
"\u001B[96mLA CORTE INTERAMERICANA DE DERECHOS HUMANOS,\u001B[0m \u001B[93m[Page: 1 || Coordinates: [88, 626, 393, 638]]\u001B[0m\n",
"\u001B[96mRESUELVE:\u001B[0m \u001B[93m[Page: 1 || Coordinates: [88, 649, 151, 661]]\u001B[0m\n",
"\u001B[96m1.\u001B[0m \u001B[93m[Page: 1 || Coordinates: [88, 673, 103, 685]]\u001B[0m\n",
"\u001B[96mConvocar a una audiencia pΓΊblica para el 30 de julio de 1991 a las 15:00\u001B[0m \u001B[93m[Page: 1 || Coordinates: [122, 673, 513, 685]]\u001B[0m\n",
"\u001B[96mhoras con el objeto de conocer los puntos de vista del Gobierno de Guatemala y de la\u001B[0m \u001B[93m[Page: 1 || Coordinates: [88, 685, 512, 697]]\u001B[0m\n",
"\u001B[96mComisiΓ³n sobre la solicitud de prΓ³rroga formulada por el primero.\u001B[0m \u001B[93m[Page: 1 || Coordinates: [88, 697, 412, 709]]\u001B[0m\n",
"\u001B[96m2\u001B[0m \u001B[93m[Page: 2 || Coordinates: [294, 71, 300, 83]]\u001B[0m\n",
"\u001B[96m2.\u001B[0m \u001B[93m[Page: 2 || Coordinates: [88, 106, 101, 118]]\u001B[0m\n",
"\u001B[96mConocer tambiΓ©n, en dicha audiencia pΓΊblica, de las medidas que, en atenciΓ³n\u001B[0m \u001B[93m[Page: 2 || Coordinates: [122, 106, 511, 118]]\u001B[0m\n",
"\u001B[96ma la resoluciΓ³n del Presidente del 15 de julio del presente aΓ±o, ha tomado el\u001B[0m \u001B[93m[Page: 2 || Coordinates: [88, 118, 515, 130]]\u001B[0m\n",
"\u001B[96mGobierno de Guatemala.\u001B[0m \u001B[93m[Page: 2 || Coordinates: [88, 129, 211, 141]]\u001B[0m\n",
"\u001B[96m3.\u001B[0m \u001B[93m[Page: 2 || Coordinates: [88, 153, 103, 165]]\u001B[0m\n",
"\u001B[96mReservarse el derecho de convocar a una audiencia pΓΊblica para resolver la\u001B[0m \u001B[93m[Page: 2 || Coordinates: [122, 153, 513, 165]]\u001B[0m\n",
"\u001B[96mpeticiΓ³n de la ComisiΓ³n sobre medidas provisionales respecto de Guatemala.\u001B[0m \u001B[93m[Page: 2 || Coordinates: [88, 165, 467, 177]]\u001B[0m\n",
"\u001B[96mHΓ©ctor Fix-Zamudio\u001B[0m \u001B[93m[Page: 2 || Coordinates: [249, 200, 349, 212]]\u001B[0m\n",
"\u001B[96mPresidente\u001B[0m \u001B[93m[Page: 2 || Coordinates: [272, 212, 327, 224]]\u001B[0m\n",
"\u001B[96mOrlando\u001B[0m \u001B[93m[Page: 2 || Coordinates: [88, 248, 161, 260]]\u001B[0m\n",
"\u001B[96mTovar\u001B[0m \u001B[93m[Page: 2 || Coordinates: [129, 248, 191, 260]]\u001B[0m\n",
"\u001B[96mTamayo\u001B[0m \u001B[93m[Page: 2 || Coordinates: [161, 248, 234, 260]]\u001B[0m\n",
"\u001B[96mThomas\u001B[0m \u001B[93m[Page: 2 || Coordinates: [225, 248, 436, 260]]\u001B[0m\n",
"\u001B[96mBuergenthal\u001B[0m \u001B[93m[Page: 2 || Coordinates: [405, 248, 499, 260]]\u001B[0m\n",
"\u001B[96mRafael Nieto Navia\u001B[0m \u001B[93m[Page: 2 || Coordinates: [88, 283, 195, 295]]\u001B[0m\n",
"\u001B[96mPolicarpo Callejas Bonilla\u001B[0m \u001B[93m[Page: 2 || Coordinates: [329, 283, 481, 295]]\u001B[0m\n",
"\u001B[96mSonia\u001B[0m \u001B[93m[Page: 2 || Coordinates: [88, 318, 150, 330]]\u001B[0m\n",
"\u001B[96mPicado\u001B[0m \u001B[93m[Page: 2 || Coordinates: [118, 318, 184, 330]]\u001B[0m\n",
"\u001B[96mSotela\u001B[0m \u001B[93m[Page: 2 || Coordinates: [153, 318, 218, 330]]\u001B[0m\n",
"\u001B[96mJulio\u001B[0m \u001B[93m[Page: 2 || Coordinates: [191, 318, 419, 330]]\u001B[0m\n",
"\u001B[96mA.\u001B[0m \u001B[93m[Page: 2 || Coordinates: [388, 318, 433, 330]]\u001B[0m\n",
"\u001B[96mBarberis\u001B[0m \u001B[93m[Page: 2 || Coordinates: [402, 318, 477, 330]]\u001B[0m\n",
"\u001B[96mManuel E. Ventura Robles\u001B[0m \u001B[93m[Page: 2 || Coordinates: [235, 354, 364, 366]]\u001B[0m\n",
"\u001B[96mSecretario\u001B[0m \u001B[93m[Page: 2 || Coordinates: [273, 366, 326, 378]]\u001B[0m\n"
]
}
],
"source": [
"for page in pdf_features.pages:\n",
" for token in page.tokens:\n",
" coordinates = [token.bounding_box.left, token.bounding_box.top, token.bounding_box.right, token.bounding_box.bottom]\n",
" print(f\"\\033[96m{token.content}\\033[0m \\033[93m[Page: {page.page_number} || Coordinates: {coordinates}]\\033[0m\")"
]
},
{
"cell_type": "markdown",
"id": "4576ff4d-92fc-4e19-a947-ebfb3fd01060",
"metadata": {},
"source": [
"## Fine-Tuning Models"
]
},
{
"cell_type": "markdown",
"id": "01826a89-25c9-4385-a1e6-b65c0edbd0c6",
"metadata": {},
"source": [
"Now that we have some overview about the `PdfFeatures` module, we can now start fine-tuning process."
]
},
{
"cell_type": "markdown",
"id": "586eba43-9138-4eff-a3fa-24553de04e82",
"metadata": {},
"source": [
"In the `pdf-document-layout-analysis` service, there are two LightGBM (i.e. fast) models.\n",
"\n",
"- The first model is used to determine the types of tokens. We call it `token_type_model`.\n",
"- The second model is used to identify the segments to which the tokens belong. We call this model `paragraph_extraction_model`.\n",
"\n",
"The second model uses the predictions from the first model's output (predicted token types) as part of its features. So, let's start by fine-tuning the token type model."
]
},
{
"cell_type": "markdown",
"id": "c326ccb1-a36b-40f9-b7e2-e83ba3c0e12b",
"metadata": {},
"source": [
"### Fine-Tuning Token Type Model"
]
},
{
"cell_type": "markdown",
"id": "7b3638eb-c512-4bd5-97f4-4df3ae984978",
"metadata": {},
"source": [
"#### Loading Data"
]
},
{
"cell_type": "markdown",
"id": "ab35b27c-8464-470c-9ef1-a9aef8945f6a",
"metadata": {},
"source": [
"To properly train a token type model, you should have a list of PdfFeatures items where the `token_type` attribute of their tokens is set correctly, as this attribute will be used as the label.\n",
"\n",
"To see what labels are going to be used in the model, you can check `pdf_token_type_labels/TokenType.py`. As default, we are using the labels of [DocLayNet](https://github.com/DS4SD/DocLayNet) dataset."
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "2ab3093c-6e67-4505-bac3-b7db73ef5372",
"metadata": {},
"outputs": [],
"source": [
"def get_pdf_features_labels() -> PdfFeatures:\n",
" # Assuming that you are loading your own labels in this part.\n",
" # I'm just going to put a list with a single file for demonstration.\n",
" pdf_features: PdfFeatures = PdfFeatures.from_pdf_path(\"test_pdfs/regular.pdf\")\n",
" labeled_pdf_features_list: list[PdfFeatures] = [pdf_features]\n",
" return labeled_pdf_features_list\n",
"\n",
"def train_token_type_model():\n",
" model_configuration = ModelConfiguration()\n",
" labeled_pdf_features_list: list[PdfFeatures] = get_pdf_features_labels()\n",
" trainer = TokenTypeTrainer(labeled_pdf_features_list, model_configuration)\n",
" train_labels = [token.token_type.get_index() for token in trainer.loop_tokens()]\n",
" trainer.train(\"models/token_type_example_model.model\", train_labels) \n",
"\n",
"train_token_type_model()"
]
},
{
"cell_type": "markdown",
"id": "32db8aee-9d2c-45bf-b7af-ac6249081f32",
"metadata": {},
"source": "Don't forget to check what's inside the `model_configuration`. You might need to tune the hyperparameters."
},
{
"cell_type": "markdown",
"id": "fda0c166-ac25-4084-974a-c73f1cb06f18",
"metadata": {},
"source": "If you want to use our trained models as base and refit with your own data, you can use this function:"
},
{
"cell_type": "code",
"id": "5acf2beb-f7a2-4e12-8f11-4bffff7efa74",
"metadata": {},
"source": [
"def refit_token_type_model():\n",
" model_configuration = ModelConfiguration()\n",
" model_configuration.resume_training = True\n",
" labeled_pdf_features_list: list[PdfFeatures] = get_pdf_features_labels()\n",
" trainer = TokenTypeTrainer(labeled_pdf_features_list, model_configuration)\n",
" train_labels = [token.token_type.get_index() for token in trainer.loop_tokens()]\n",
" trainer.train(\"models/token_type_lightgbm.model\", train_labels)\n"
],
"outputs": [],
"execution_count": null
},
{
"cell_type": "markdown",
"id": "7c50cbae-9841-4289-9097-7357a0c724a7",
"metadata": {},
"source": "Running this function will refit the same model with your data. Depending on your situation, it may or may not help you."
},
{
"cell_type": "markdown",
"id": "19abde59-7ba5-4e65-8ce7-6bb7fb2202d5",
"metadata": {},
"source": [
"If it does not help, you can try to check other fine-tuning strategies in LightGBM. \n",
"\n",
"In that case, all you need to do is changing this part in `pdf_tokens_type_trainer/PdfTrainer.py` (lines 47-49):\n",
"\n",
"```\n",
" if self.model_configuration.resume_training and exists(model_path):\n",
" model = lgb.Booster(model_file=model_path)\n",
" gbm = model.refit(x_train, labels)\n",
"```"
]
},
{
"cell_type": "markdown",
"id": "5379e82a-9fa7-4fea-9d6b-a11e672707bc",
"metadata": {},
"source": "To make predictions with the trained model, you can use this function:"
},
{
"cell_type": "code",
"id": "f5b7f4fb-7052-4e8c-856a-6b1d83e5ece4",
"metadata": {},
"source": [
"def get_predictions():\n",
" model_configuration = ModelConfiguration()\n",
" pdf_features: PdfFeatures = PdfFeatures.from_pdf_path(\"test_pdfs/regular.pdf\")\n",
" trainer = TokenTypeTrainer([pdf_features], model_configuration)\n",
" trainer.set_token_types()\n",
" for token in pdf_features.pages[0].tokens[:20]:\n",
" print(f\"\\033[96m{token.content}\\033[0m \\033[93m[{token.token_type}]\\033[0m\")\n",
"\n",
"get_predictions() "
],
"outputs": [],
"execution_count": null
},
{
"cell_type": "markdown",
"id": "e6808202-892d-43e0-9e7a-73ebc347901f",
"metadata": {},
"source": "### Fine-Tuning Paragraph Extraction Model"
},
{
"cell_type": "markdown",
"id": "0b31a859-7867-4bd0-be13-7ae4ff4c8a61",
"metadata": {},
"source": "#### Loading Data"
},
{
"cell_type": "markdown",
"id": "2778fd0b-5351-4c83-a15a-ecf8aac91397",
"metadata": {},
"source": "The second model in our pipeline is the paragraph extraction model. After finding the type of each token, now, we are going to \"group\" the tokens, which means, we are going to find each token's segment."
},
{
"cell_type": "markdown",
"id": "8112645a-816d-4579-b6e9-14b505703fc9",
"metadata": {},
"source": "We are going to explain the process but for this part, we highly recommend you to place your labeled data as in this following file structure and use the already existing methods. Otherwise, it can be a bit more harder for you to use our modules:"
},
{
"cell_type": "markdown",
"id": "b96c7988-cd1e-492a-9990-84db9f7111d2",
"metadata": {},
"source": [
"```\n",
".\n",
"βββ pdf-labeled-data\n",
" βββ labeled_data\n",
" β βββ token_type\n",
" β β βββ train_data\n",
" β β β βββ example_document1\n",
" β β β β βββ labels.json\n",
" β β β βββ example_document2\n",
" β β β β βββ labels.json\n",
" β β β βββ example_document3\n",
" β β β βββ labels.json\n",
" β β βββ test_data\n",
" β β βββ example_document4\n",
" β β βββ labels.json\n",
" β βββ paragraph_extraction\n",
" β βββ train_data\n",
" β β βββ example_document1\n",
" β β β βββ labels.json\n",
" β β βββ example_document2\n",
" β β β βββ labels.json\n",
" β β βββ example_document3\n",
" β β βββ labels.json\n",
" β βββ test_data\n",
" β βββ example_document4\n",
" β βββ labels.json\n",
" βββ pdfs\n",
" βββ example_document1\n",
" β βββ document.pdf\n",
" β βββ etree.xml\n",
" βββ example_document2\n",
" β βββ document.pdf\n",
" β βββ etree.xml\n",
" βββ example_document3\n",
" β βββ document.pdf\n",
" β βββ etree.xml\n",
" βββ example_document4\n",
" βββ document.pdf\n",
" βββ etree.xml\n",
"```"
]
},
{
"cell_type": "markdown",
"id": "6c40e426-af77-47fc-a82c-77b5ca4fddeb",
"metadata": {},
"source": [
"Some details about this structure:\n",
"\n",
"- Every detail in the token type labels file structure applies for this structure too.\n",
"- `paragraph_extraction` directory is where your paragraph extraction datasets are located, its name should not be something else.\n",
"- `token_type` labels are also shown in the structure because token types are used as a feature in the paragraph extraction model. If you do not have it, it will not break the pipeline and still train the model but the token_type feature for every token will be `TokenType.TEXT` in paragraph extractor model's features.\n",
"- If you do not have `token_type` labels, another option is, after loading the data, you can predict the token types with the token type model (will be shown below)\n"
]
},
{
"cell_type": "markdown",
"id": "1e234e69-7e50-4ffe-a31b-2dc8248a676f",
"metadata": {},
"source": "For labels.json files, they should have this structure:"
},
{
"cell_type": "markdown",
"id": "472072a6-a02c-4b75-bbc0-f13bb7e357d2",
"metadata": {},
"source": [
"```\n",
"{\n",
" \"pages\": [\n",
" {\n",
" \"number\": 1,\n",
" \"labels\": [\n",
" {\n",
" \"top\": 86,\n",
" \"left\": 162,\n",
" \"width\": 292,\n",
" \"height\": 24,\n",
" \"label_type\": 0\n",
" },\n",
" {\n",
" \"top\": 122,\n",
" \"left\": 221,\n",
" \"width\": 174,\n",
" \"height\": 12,\n",
" \"label_type\": 0\n",
" }\n",
" ]\n",
" },\n",
" {\n",
" \"number\": 2,\n",
" \"labels\": [\n",
" {\n",
" \"top\": 36,\n",
" \"left\": 296,\n",
" \"width\": 22,\n",
" \"height\": 13,\n",
" \"label_type\": 0\n",
" },\n",
" {\n",
" \"top\": 72,\n",
" \"left\": 71,\n",
" \"width\": 473,\n",
" \"height\": 49,\n",
" \"label_type\": 0\n",
" }\n",
" ]\n",
" }\n",
" ]\n",
"}\n",
"```"
]
},
{
"cell_type": "markdown",
"id": "bb6e716b-b742-4186-9e1a-ac5ecea708ac",
"metadata": {},
"source": [
"Here you see a list of labels for each page. Each label includes information about the coordinates `top`, `left`, `width`, `height` for each segment/paragraph. So, this time the coordinates belongs to the segments, not to the tokens.\n",
"\n",
"As \"label_type\", it should be always 0 since there is only one type \"paragraph\" (don't get confused with this part, it's not important, just put 0 and go on).\n"
]
},
{
"cell_type": "markdown",
"id": "a2c8a9b3-6180-41f2-bb82-bea892a61f5e",
"metadata": {},
"source": "Using this information, you can load your data like this:"
},
{
"cell_type": "code",
"id": "cb6ae549-4f52-45b0-853a-6414ca8b4af3",
"metadata": {},
"source": [
"from os.path import join\n",
"from paragraph_extraction_trainer.PdfParagraphTokens import PdfParagraphTokens\n",
"\n",
"\n",
"def load_paragraph_extraction_labels():\n",
"\t\n",
"\tpdf_labeled_data_root_path = \"path/to/pdf/labeled/data\"\n",
"\tdatasets_path = join(pdf_labeled_data_root_path, \"paragraph_extraction\")\n",
"\tlabeled_data: list[PdfParagraphTokens] = []\n",
"\t\n",
"\tfor dataset in listdir(join(datasets_path)):\n",
"\t\tif \"train\" not in dataset:\n",
"\t\t\tcontinue\n",
"\t\tpdf_paragraph_tokens: PdfParagraphTokens = PdfParagraphTokens.from_labeled_data(pdf_labeled_data_root_path, dataset, pdf_name)\n",
"\t\tlabeled_data.append(pdf_paragraph_tokens)\n",
"\t\n",
"\treturn labeled_data\n",
"\n",
"\n",
"from adapters.ml.pdf_tokens_type_trainer.TokenTypeTrainer import TokenTypeTrainer\n",
"\n",
"def load_paragraph_extraction_labels():\n",
"\n",
" pdf_labeled_data_root_path = \"path/to/pdf/labeled/data\"\n",
" datasets_path = join(pdf_labeled_data_root_path, \"paragraph_extraction\")\n",
" labeled_pdf_paragraph_tokens_list: list[PdfParagraphTokens] = []\n",
" \n",
" for dataset in listdir(join(datasets_path)):\n",
" if \"train\" not in dataset:\n",
" continue\n",
" pdf_paragraph_tokens: PdfParagraphTokens = PdfParagraphTokens.from_labeled_data(pdf_labeled_data_root_path, dataset, pdf_name)\n",
" labeled_pdf_paragraph_tokens_list.append(pdf_paragraph_tokens)\n",
" \n",
" \n",
" token_type_model_configuration = ModelConfiguration()\n",
" labeled_pdf_features_list = [pdf_paragraph_tokens.pdf_features for pdf_paragraph_tokens in labeled_pdf_paragraph_tokens_list]\n",
" trainer = TokenTypeTrainer(labeled_pdf_features_list, model_configuration)\n",
" \n",
" \n",
" return labeled_pdf_paragraph_tokens_list"
],
"outputs": [],
"execution_count": null
},
{
"cell_type": "markdown",
"id": "cf3f6a6c-cba7-43c4-9f72-85cbe447cb6e",
"metadata": {},
"source": "#### Fine-Tuning the Model"
},
{
"cell_type": "markdown",
"id": "29dbaba4-d3d6-4985-be44-df872fe9b5d4",
"metadata": {},
"source": "Again, to be able to use our trained paragraph extraction model, you should download it from our huggingface repo. You can just run `download_models.py` and both models are going to be downloaded."
},
{
"cell_type": "markdown",
"id": "8a82f6f6-cec9-48bc-9c64-b09aa65d2754",
"metadata": {},
"source": [
"If you want to download it manually, you can use this link: https://huggingface.co/HURIDOCS/pdf-document-layout-analysis/tree/main\n",
"\n",
"After downloading it, place it into `models` directory. The path should be as follows: \n",
"`~/pdf-document-layout-analysis/models/paragraph_extraction_lightgbm.model`"
]
},
{
"cell_type": "markdown",
"id": "b95cd2cd-0d41-4518-8576-b1a0d2adc21b",
"metadata": {},
"source": "To train the paragraph extraction model from scratch:"
},
{
"cell_type": "code",
"id": "67948603-80e6-4b42-9ba1-78868fd9f946",
"metadata": {},
"source": [
"from paragraph_extraction_trainer.model_configuration import MODEL_CONFIGURATION\n",
"\n",
"\n",
"def loop_pdf_paragraph_tokens(pdf_paragraph_tokens_list: list[PdfParagraphTokens]):\n",
" for pdf_paragraph_tokens in pdf_paragraph_tokens_list:\n",
" for page in pdf_paragraph_tokens.pdf_features.pages:\n",
" if not page.tokens:\n",
" continue\n",
" for token, next_token in zip(page.tokens, page.tokens[1:]):\n",
" yield pdf_paragraph_tokens, token, next_token\n",
" yield pdf_paragraph_tokens, page.tokens[-1], page.tokens[-1]\n",
"\n",
"\n",
"def train_paragraph_extraction_model():\n",
" labeled_pdf_paragraph_tokens_list: list[PdfParagraphTokens] = load_paragraph_extraction_labels()\n",
" labeled_pdf_features_list = [pdf_paragraph_tokens.pdf_features for pdf_paragraph_tokens in labeled_pdf_paragraph_tokens_list]\n",
" trainer = ParagraphExtractorTrainer(labeled_pdf_features_list, MODEL_CONFIGURATION)\n",
" \n",
" train_labels = []\n",
" for pdf_paragraph_tokens, token, next_token in loop_pdf_paragraph_tokens([pdf_paragraph_tokens]):\n",
" train_labels.append(pdf_paragraph_tokens.check_same_paragraph(token, next_token))\n",
"\n",
" trainer.train(\"models/paragraph_extraction_example_model.model\", train_labels) "
],
"outputs": [],
"execution_count": null
},
{
"cell_type": "markdown",
"id": "2e7cd129-874e-415d-9855-401d8c5d0136",
"metadata": {},
"source": "And to refit the model with your own data, all you need to do is setting `resume_training` configuration to `True`:"
},
{
"cell_type": "code",
"id": "37b6b980-deaf-4ba4-baf0-7bf137af63a7",
"metadata": {},
"source": [
"def refit_paragraph_extraction_model():\n",
" labeled_pdf_paragraph_tokens_list: list[PdfParagraphTokens] = load_paragraph_extraction_labels()\n",
" labeled_pdf_features_list = [pdf_paragraph_tokens.pdf_features for pdf_paragraph_tokens in labeled_pdf_paragraph_tokens_list]\n",
" MODEL_CONFIGURATION.resume_training = True\n",
" trainer = ParagraphExtractorTrainer(labeled_pdf_features_list, MODEL_CONFIGURATION)\n",
" \n",
" train_labels = []\n",
" for pdf_paragraph_tokens, token, next_token in loop_pdf_paragraph_tokens([pdf_paragraph_tokens]):\n",
" train_labels.append(pdf_paragraph_tokens.check_same_paragraph(token, next_token))\n",
"\n",
" trainer.train(\"models/paragraph_extraction_example_model.model\", train_labels) "
],
"outputs": [],
"execution_count": null
},
{
"cell_type": "markdown",
"id": "1389cf49-c163-4f90-ab0c-9606756b8ef9",
"metadata": {},
"source": "<font color='red'>[IMPORTANT]</font> If you want to use your own trained models in pdf-document-layout-analysis service, make sure their names are `token_type_lightgbm.model` and `paragraph_extraction_lightgbm.model` and are placed in `models` directory."
},
{
"cell_type": "markdown",
"id": "b1d4cf8c-65d2-4496-adcf-ab73acc5000f",
"metadata": {},
"source": "After finishing training, you can get the predictions of the model like shown in below:"
},
{
"cell_type": "code",
"id": "69e747aa-9b19-4e8d-acbb-f8d221dfe006",
"metadata": {},
"source": [
"from pdf_tokens_type_trainer.ModelConfiguration import ModelConfiguration\n",
"from fast_trainer.model_configuration import MODEL_CONFIGURATION as PARAGRAPH_EXTRACTION_CONFIGURATION\n",
"from domain.PdfSegment import PdfSegment\n",
"from adapters.ml.fast_trainer.ParagraphExtractorTrainer import ParagraphExtractorTrainer\n",
"\n",
"def get_predictions():\n",
" pdf_features: PdfFeatures = PdfFeatures.from_pdf_path(\"test_pdfs/regular.pdf\")\n",
" # First, use token type model to find and set the types.\n",
" token_type_trainer = TokenTypeTrainer([pdf_features], ModelConfiguration())\n",
" token_type_trainer.set_token_types(\"models/token_type_lightgbm.model\")\n",
" trainer = ParagraphExtractorTrainer(pdfs_features=[pdf_features], model_configuration=PARAGRAPH_EXTRACTION_CONFIGURATION)\n",
" segments: list[PdfSegment] = trainer.get_pdf_segments(\"models/paragraph_extraction_lightgbm.model\")\n",
" model_configuration = ModelConfiguration()\n",
" for segment in segments[:20]:\n",
" print(f\"\\033[96m{segment.text_content}\\033[0m \\033[93m[{segment.segment_type}]\\033[0m \\033[91m{segment.bounding_box.to_dict()}\\033[0m\")"
],
"outputs": [],
"execution_count": null
},
{
"cell_type": "markdown",
"id": "e3af70a1-404e-4bac-a366-f7962636b1eb",
"metadata": {},
"source": "Output of the `paragraph_extraction_model` is a list of `PdfSegment` items. Every item includes the information like `page_number`, `text_content`, `segment_type`, `bounding_box`, `pdf_name` for each of the segments. "
},
{
"cell_type": "code",
"id": "4dc0c106-7b22-42e3-969f-d52ecddae3ae",
"metadata": {},
"source": "",
"outputs": [],
"execution_count": null
},
{
"cell_type": "markdown",
"id": "3d5b2376-d983-4c49-8130-b94368782828",
"metadata": {},
"source": [
"```\n",
"{\n",
" \"pages\": [\n",
" {\n",
" \"number\": 1,\n",
" \"labels\": [\n",
" {\n",
" \"top\": 86,\n",
" \"left\": 162,\n",
" \"width\": 292,\n",
" \"height\": 24,\n",
" \"label_type\": 0\n",
" },\n",
" {\n",
" \"top\": 122,\n",
" \"left\": 221,\n",
" \"width\": 174,\n",
" \"height\": 12,\n",
" \"label_type\": 0\n",
" }\n",
" ]\n",
" },\n",
" {\n",
" \"number\": 2,\n",
" \"labels\": [\n",
" {\n",
" \"top\": 36,\n",
" \"left\": 296,\n",
" \"width\": 22,\n",
" \"height\": 13,\n",
" \"label_type\": 0\n",
" },\n",
" {\n",
" \"top\": 72,\n",
" \"left\": 71,\n",
" \"width\": 473,\n",
" \"height\": 49,\n",
" \"label_type\": 0\n",
" }\n",
" ]\n",
" }\n",
" ]\n",
"}\n",
"```"
]
},
{
"cell_type": "markdown",
"id": "1972189b-c70b-436d-9830-56adc354b777",
"metadata": {},
"source": [
"Using this information, you can load your data like this:"
]
},
{
"cell_type": "markdown",
"id": "d6c07ba4-334e-4ff3-8e2f-b2f684f053c9",
"metadata": {},
"source": [
"In case you do not have `token_type` labels and want to find the types with the `token_type_model`, you can use this:"
]
},
{
"cell_type": "markdown",
"id": "41b6bb64-92a2-4b75-95f9-a934c104b7c0",
"metadata": {},
"source": [
"#### Fine-Tuning the Model"
]
},
{
"cell_type": "markdown",
"id": "bd38ced0-2925-4fe5-98ec-b633a19b5ce3",
"metadata": {},
"source": [
"If you want to download it manually, you can use this link: https://huggingface.co/HURIDOCS/pdf-document-layout-analysis/tree/main\n",
"\n",
"After downloading it, place it into `models` directory. The path should be as follows: \n",
"`~/pdf-document-layout-analysis/models/paragraph_extraction_lightgbm.model`"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "60b22be7-35d0-4c34-891e-c67d25942c72",
"metadata": {},
"outputs": [],
"source": [
"from paragraph_extraction_trainer.model_configuration import MODEL_CONFIGURATION\n",
"\n",
"\n",
"def loop_pdf_paragraph_tokens(pdf_paragraph_tokens_list: list[PdfParagraphTokens]):\n",
" for pdf_paragraph_tokens in pdf_paragraph_tokens_list:\n",
" for page in pdf_paragraph_tokens.pdf_features.pages:\n",
" if not page.tokens:\n",
" continue\n",
" for token, next_token in zip(page.tokens, page.tokens[1:]):\n",
" yield pdf_paragraph_tokens, token, next_token\n",
" yield pdf_paragraph_tokens, page.tokens[-1], page.tokens[-1]\n",
"\n",
"\n",
"def train_paragraph_extraction_model():\n",
" labeled_pdf_paragraph_tokens_list: list[PdfParagraphTokens] = load_paragraph_extraction_labels()\n",
" labeled_pdf_features_list = [pdf_paragraph_tokens.pdf_features for pdf_paragraph_tokens in labeled_pdf_paragraph_tokens_list]\n",
" trainer = ParagraphExtractorTrainer(labeled_pdf_features_list, MODEL_CONFIGURATION)\n",
" \n",
" train_labels = []\n",
" for pdf_paragraph_tokens, token, next_token in loop_pdf_paragraph_tokens([pdf_paragraph_tokens]):\n",
" train_labels.append(pdf_paragraph_tokens.check_same_paragraph(token, next_token))\n",
"\n",
" trainer.train(\"models/paragraph_extraction_example_model.model\", train_labels) "
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "5a652ca1-b9c7-4731-ba8b-aa98cd0d11a7",
"metadata": {},
"outputs": [],
"source": [
"def refit_paragraph_extraction_model():\n",
" labeled_pdf_paragraph_tokens_list: list[PdfParagraphTokens] = load_paragraph_extraction_labels()\n",
" labeled_pdf_features_list = [pdf_paragraph_tokens.pdf_features for pdf_paragraph_tokens in labeled_pdf_paragraph_tokens_list]\n",
" MODEL_CONFIGURATION.resume_training = True\n",
" trainer = ParagraphExtractorTrainer(labeled_pdf_features_list, MODEL_CONFIGURATION)\n",
" \n",
" train_labels = []\n",
" for pdf_paragraph_tokens, token, next_token in loop_pdf_paragraph_tokens([pdf_paragraph_tokens]):\n",
" train_labels.append(pdf_paragraph_tokens.check_same_paragraph(token, next_token))\n",
"\n",
" trainer.train(\"models/paragraph_extraction_example_model.model\", train_labels) "
]
},
{
"cell_type": "markdown",
"id": "0ca5d8ef-7455-4723-af4e-d8c49096251f",
"metadata": {},
"source": [
"After finishing training, you can get the predictions of the model like shown in below:"
]
},
{
"cell_type": "markdown",
"id": "e5a5ab63-7931-40e0-8f51-43e3f3ef5b32",
"metadata": {},
"source": [
"Output of the `paragraph_extraction_model` is a list of `PdfSegment` items. Every item includes the information like `page_number`, `text_content`, `segment_type`, `bounding_box`, `pdf_name` for each of the segments. "
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.9"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|