File size: 23,773 Bytes
2e237ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
#!/usr/bin/env python3
"""
Fixed PDF Data Extractor - Addresses key issues in comprehensive_extract.py

Key fixes:
1. Better table extraction and cleaning
2. Improved key-value pair extraction
3. More robust text processing
4. Enhanced vehicle registration extraction
5. Better date/number pattern recognition
"""

import json
import re
import pandas as pd
from typing import Dict, List, Any, Optional
import logging
from pathlib import Path
import sys
from datetime import datetime

try:
    import pdfplumber
    HAS_PDFPLUMBER = True
except ImportError:
    HAS_PDFPLUMBER = False

logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger("fixed_pdf_extractor")

class FixedPDFExtractor:
    def __init__(self):
        logger.info("๐Ÿš€ Initializing Fixed PDF Extractor")
        
    def extract_everything(self, pdf_path: str) -> Dict[str, Any]:
        if not HAS_PDFPLUMBER:
            raise RuntimeError("pdfplumber is required. Install with: pip install pdfplumber")

        logger.info(f"๐Ÿ“– Processing PDF: {pdf_path}")
        result = {
            "document_info": {
                "filename": Path(pdf_path).name,
                "total_pages": 0,
                "extraction_timestamp": datetime.now().isoformat()
            },
            "extracted_data": {
                "all_text_content": [],
                "all_tables": [],
                "key_value_pairs": {},
                "audit_information": {},
                "operator_information": {},
                "vehicle_registrations": [],
                "driver_records": [],
                "compliance_summary": {},
                "dates_and_numbers": {}
            }
        }

        all_text_blocks, all_tables = [], []

        with pdfplumber.open(pdf_path) as pdf:
            result["document_info"]["total_pages"] = len(pdf.pages)
            
            for page_num, page in enumerate(pdf.pages, 1):
                logger.info(f"๐Ÿ“„ Processing page {page_num}")
                
                # Extract text with better handling
                page_text = self._extract_page_text(page)
                if page_text:
                    all_text_blocks.append({
                        "page": page_num, 
                        "text": page_text,
                        "word_count": len(page_text.split())
                    })

                # Extract tables with improved cleaning
                tables = self._extract_page_tables(page, page_num)
                all_tables.extend(tables)

        result["extracted_data"]["all_text_content"] = all_text_blocks
        result["extracted_data"]["all_tables"] = all_tables

        # Process extracted data with improved methods
        combined_text = "\n\n".join(b["text"] for b in all_text_blocks)
        
        result["extracted_data"]["key_value_pairs"] = self._extract_key_value_pairs_improved(combined_text)
        result["extracted_data"]["audit_information"] = self._extract_audit_info(combined_text, all_tables)
        result["extracted_data"]["operator_information"] = self._extract_operator_info(combined_text, all_tables)
        result["extracted_data"]["vehicle_registrations"] = self._extract_vehicle_registrations(all_tables)
        result["extracted_data"]["driver_records"] = self._extract_driver_records(all_tables)
        result["extracted_data"]["compliance_summary"] = self._extract_compliance_summary(combined_text, all_tables)
        result["extracted_data"]["dates_and_numbers"] = self._extract_dates_and_numbers_improved(combined_text)

        # Generate summary
        result["extraction_summary"] = {
            "text_blocks_found": len(all_text_blocks),
            "tables_found": len(all_tables),
            "key_value_pairs_found": len(result["extracted_data"]["key_value_pairs"]),
            "vehicle_registrations_found": len(result["extracted_data"]["vehicle_registrations"]),
            "driver_records_found": len(result["extracted_data"]["driver_records"]),
            "total_characters": len(combined_text),
            "processing_timestamp": datetime.now().isoformat()
        }

        logger.info("โœ… Extraction completed!")
        return result

    def _extract_page_text(self, page) -> Optional[str]:
        """Extract text from page with better handling"""
        try:
            text = page.extract_text()
            if text:
                # Clean up text
                text = re.sub(r'[ \t]+', ' ', text.strip())
                text = re.sub(r'\n\s*\n', '\n', text)
                return text
        except Exception as e:
            logger.warning(f"Failed to extract text from page: {e}")
        return None

    def _extract_page_tables(self, page, page_num: int) -> List[Dict]:
        """Extract tables with improved processing"""
        tables = []
        try:
            raw_tables = page.extract_tables()
            if raw_tables:
                for table_idx, table in enumerate(raw_tables):
                    cleaned_table = self._clean_table_improved(table)
                    if cleaned_table and len(cleaned_table) > 0:
                        tables.append({
                            "page": page_num,
                            "table_index": table_idx + 1,
                            "headers": cleaned_table[0] if cleaned_table else [],
                            "data": cleaned_table[1:] if len(cleaned_table) > 1 else [],
                            "raw_data": cleaned_table,
                            "row_count": len(cleaned_table) - 1 if len(cleaned_table) > 1 else 0,
                            "column_count": len(cleaned_table[0]) if cleaned_table else 0
                        })
        except Exception as e:
            logger.warning(f"Failed to extract tables from page {page_num}: {e}")
        
        return tables

    def _clean_table_improved(self, table: List[List]) -> List[List[str]]:
        """Improved table cleaning with better cell processing"""
        if not table:
            return []
        
        cleaned = []
        for row in table:
            cleaned_row = []
            for cell in row:
                if cell is None:
                    cleaned_cell = ""
                else:
                    cleaned_cell = str(cell).strip()
                    cleaned_cell = re.sub(r'\s+', ' ', cleaned_cell)
                    cleaned_cell = re.sub(r'[\x00-\x1f\x7f-\x9f]', '', cleaned_cell)
                cleaned_row.append(cleaned_cell)
            if any(cell.strip() for cell in cleaned_row):
                cleaned.append(cleaned_row)
        
        # Optional: collapse single-column tables of empty strings
        if cleaned and all(len(r) == len(cleaned[0]) for r in cleaned):
            return cleaned
        return cleaned

    def _extract_key_value_pairs_improved(self, text: str) -> Dict[str, str]:
        """Improved key-value pair extraction with better cleaning"""
        pairs: Dict[str, str] = {}

        # Normalize text a bit for regex stability
        t = text.replace('\r', '\n')

        # Pattern 1: colon-separated pairs (key: value)
        pattern1 = re.compile(
            r'([A-Za-z][\w\s()/\-.]{2,80}?):\s*([^\n\r:][^\n\r]*)'
        )
        for key, val in pattern1.findall(t):
            k = key.strip()
            v = val.strip()
            # Filter junk: very long values, pure separators, or obvious headers
            if not v or len(v) > 200:
                continue
            if re.fullmatch(r'[-_/\.]+', v):
                continue
            # Avoid capturing the next key as value by trimming trailing key-like tokens
            v = re.sub(r'\s+[A-Z][\w\s()/\-.]{2,40}:$', '', v).strip()
            # Skip values that are just long digit runs (likely id lists without meaning)
            if re.fullmatch(r'\d{6,}', v):
                continue
            pairs[k] = v

        # Pattern 2: inline โ€œKey โ€“ Valueโ€ or โ€œKey โ€” Valueโ€
        pattern2 = re.compile(r'([A-Za-z][\w\s()/\-.]{2,80}?)\s*[โ€“โ€”-]\s*([^\n\r]+)')
        for key, val in pattern2.findall(t):
            k = key.strip()
            v = val.strip()
            if v and len(v) <= 200 and not re.fullmatch(r'\d{6,}', v):
                pairs.setdefault(k, v)

        return pairs

    def _extract_audit_info(self, text: str, tables: List[Dict]) -> Dict[str, Any]:
        """Extract audit-specific information with better filtering"""
        audit_info: Dict[str, Any] = {}
        
        # Prefer tables
        for table in tables:
            headers = [str(h).lower() for h in table.get("headers", [])]
            joined = ' '.join(headers)
            if "audit information" in joined or "auditinformation" in joined:
                data = table.get("data", [])
                for row in data:
                    if len(row) >= 2 and row[0] and row[1]:
                        key = str(row[0]).strip()
                        value = str(row[1]).strip()
                        # Skip numbered list rows (e.g., "1.", "2)")
                        if re.match(r'^\s*\d+\s*[.)]\s*$', key):
                            continue
                        if key and value:
                            audit_info[key] = value

        # Backup from text
        candidates = {
            "Date of Audit": r'Date\s+of\s+Audit[:\s]*([^\n\r]+)',
            "Location of audit": r'Location\s+of\s+audit[:\s]*([^\n\r]+)',
            "Auditor name": r'Auditor\s+name[:\s]*([^\n\r]+)',
            "Audit Matrix Identifier (Name or Number)": r'Audit\s+Matrix\s+Identifier.*?[:\s]*([^\n\r]+)',
        }
        for k, pat in candidates.items():
            if k not in audit_info:
                m = re.search(pat, text, re.IGNORECASE)
                if m:
                    audit_info[k] = m.group(1).strip()
        
        return audit_info

    def _extract_operator_info(self, text: str, tables: List[Dict]) -> Dict[str, Any]:
        """Extract operator information with better table parsing"""
        operator_info: Dict[str, Any] = {}
        
        # Look for operator information in tables first
        for table in tables:
            headers = [str(h).lower() for h in table.get("headers", [])]
            if ("operatorinformation" in ' '.join(headers) or 
                "operator information" in ' '.join(headers) or
                "operatorcontactdetails" in ' '.join(headers)):
                
                data = table.get("data", [])
                for row in data:
                    if len(row) >= 2 and row[0] and row[1]:
                        key = str(row[0]).strip()
                        value = str(row[1]).strip()
                        if key and value:
                            # Clean up key names
                            kl = key.lower()
                            if "operator name" in kl:
                                operator_info["operator_name"] = value
                            elif "trading name" in kl:
                                operator_info["trading_name"] = value
                            elif "company number" in kl:
                                if len(row) > 2:
                                    company_parts = [str(r).strip() for r in row[1:] if str(r).strip()]
                                    operator_info["company_number"] = "".join(company_parts)
                                else:
                                    operator_info["company_number"] = value
                            elif "business address" in kl:
                                operator_info["business_address"] = value
                            elif "postal address" in kl:
                                operator_info["postal_address"] = value
                            elif "email" in kl:
                                operator_info["email"] = value
                            elif "telephone" in kl or "phone" in kl:
                                operator_info["phone"] = value
                            elif "nhvas accreditation" in kl:
                                operator_info["nhvas_accreditation"] = value
                            elif "nhvas manual" in kl:
                                operator_info["nhvas_manual"] = value
        
        # Extract from text patterns as backup
        patterns = {
            'operator_name': r'Operator\s*name[:\s\(]*([^\n\r\)]+?)(?=\s*NHVAS|\s*Registered|$)',
            'trading_name': r'Registered\s*trading\s*name[:\s\/]*([^\n\r]+?)(?=\s*Australian|$)', 
            'company_number': r'Australian\s*Company\s*Number[:\s]*([0-9\s]+?)(?=\s*NHVAS|$)',
            'business_address': r'Operator\s*business\s*address[:\s]*([^\n\r]+?)(?=\s*Operator\s*Postal|$)',
            'postal_address': r'Operator\s*Postal\s*address[:\s]*([^\n\r]+?)(?=\s*Email|$)',
            'email': r'Email\s*address[:\s]*([^\s\n\r]+)',
            'phone': r'Operator\s*Telephone\s*Number[:\s]*([^\s\n\r]+)',
            'nhvas_accreditation': r'NHVAS\s*Accreditation\s*No\.[:\s\(]*([^\n\r\)]+)',
        }
        
        for key, pattern in patterns.items():
            if key not in operator_info:  # Only use text if not found in tables
                match = re.search(pattern, text, re.IGNORECASE)
                if match:
                    value = match.group(1).strip()
                    if value and len(value) < 200:
                        if key == 'company_number':
                            value = re.sub(r'\s+', '', value)
                        operator_info[key] = value
        
        return operator_info

    def _extract_vehicle_registrations(self, tables: List[Dict]) -> List[Dict]:
        """Extract vehicle registration information from tables"""
        vehicles: List[Dict[str, Any]] = []
        
        for table in tables:
            headers = [str(h).lower() for h in table.get("headers", [])]
            
            # Look for vehicle registration tables
            if any(keyword in ' '.join(headers) for keyword in ['registration', 'vehicle', 'number']):
                reg_col = None
                for i, header in enumerate(headers):
                    if 'registration' in header and 'number' in header:
                        reg_col = i
                        break
                
                if reg_col is not None:
                    data = table.get("data", [])
                    for row in data:
                        if len(row) > reg_col and row[reg_col]:
                            reg_num = str(row[reg_col]).strip()
                            # Validate registration format (letters/numbers)
                            if re.match(r'^[A-Z]{1,3}\s*\d{1,3}\s*[A-Z]{0,3}$', reg_num):
                                vehicle_info = {"registration_number": reg_num}
                                
                                # Add other columns as additional info
                                for i, header in enumerate(table.get("headers", [])):
                                    if i < len(row) and i != reg_col:
                                        vehicle_info[str(header)] = str(row[i]).strip()
                                
                                vehicles.append(vehicle_info)
        
        return vehicles

    def _extract_driver_records(self, tables: List[Dict]) -> List[Dict]:
        """Extract driver records from tables"""
        drivers: List[Dict[str, Any]] = []
        
        for table in tables:
            headers = [str(h).lower() for h in table.get("headers", [])]
            
            # Look for driver/scheduler tables
            if any(keyword in ' '.join(headers) for keyword in ['driver', 'scheduler', 'name']):
                name_col = None
                for i, header in enumerate(headers):
                    if 'name' in header:
                        name_col = i
                        break
                
                if name_col is not None:
                    data = table.get("data", [])
                    for row in data:
                        if len(row) > name_col and row[name_col]:
                            name = str(row[name_col]).strip()
                            # Basic name validation
                            if re.match(r'^[A-Za-z\s]{2,}$', name) and len(name.split()) >= 2:
                                driver_info = {"name": name}
                                
                                # Add other columns
                                for i, header in enumerate(table.get("headers", [])):
                                    if i < len(row) and i != name_col:
                                        driver_info[str(header)] = str(row[i]).strip()
                                
                                drivers.append(driver_info)
        
        return drivers

    def _extract_compliance_summary(self, text: str, tables: List[Dict]) -> Dict[str, Any]:
        """Extract compliance information"""
        compliance = {
            "standards_compliance": {},
            "compliance_codes": {},
            "audit_results": []
        }
        
        # Look for compliance tables
        for table in tables:
            headers = [str(h).lower() for h in table.get("headers", [])]
            
            if any(keyword in ' '.join(headers) for keyword in ['compliance', 'standard', 'requirement']):
                data = table.get("data", [])
                for row in data:
                    if len(row) >= 2:
                        standard = str(row[0]).strip()
                        code = str(row[1]).strip()
                        if standard.startswith('Std') and code in ['V', 'NC', 'SFI', 'NAP', 'NA']:
                            compliance["standards_compliance"][standard] = code
        
        # Extract compliance codes definitions
        code_patterns = {
            'V': r'\bV\b\s+([^\n\r]+)',
            'NC': r'\bNC\b\s+([^\n\r]+)',
            'SFI': r'\bSFI\b\s+([^\n\r]+)',
            'NAP': r'\bNAP\b\s+([^\n\r]+)',
            'NA': r'\bNA\b\s+([^\n\r]+)',
        }
        
        for code, pattern in code_patterns.items():
            match = re.search(pattern, text, re.IGNORECASE)
            if match:
                compliance["compliance_codes"][code] = match.group(1).strip()
        
        return compliance

    def _extract_dates_and_numbers_improved(self, text: str) -> Dict[str, Any]:
        """Improved date and number extraction"""
        result = {
            "dates": [],
            "registration_numbers": [],
            "phone_numbers": [],
            "email_addresses": [],
            "reference_numbers": []
        }
        
        # Date patterns
        date_patterns = [
            r'\b(\d{1,2}(?:st|nd|rd|th)?\s+[A-Za-z]+\s+\d{4})\b',
            r'\b(\d{1,2}/\d{1,2}/\d{4})\b',
            r'\b(\d{1,2}-\d{1,2}-\d{4})\b',
            r'\b(\d{1,2}\.\d{1,2}\.\d{4})\b',
        ]
        for pattern in date_patterns:
            result["dates"].extend(re.findall(pattern, text))
        
        # Registration numbers (Australian format-ish)
        reg_pattern = r'\b([A-Z]{1,3}\s*\d{1,3}\s*[A-Z]{0,3})\b'
        result["registration_numbers"] = list(set(re.findall(reg_pattern, text)))
        
        # Phone numbers (AU)
        phone_pattern = r'\b((?:\+61|0)[2-9]\s?\d{4}\s?\d{4})\b'
        result["phone_numbers"] = list(set(re.findall(phone_pattern, text)))
        
        # Email addresses
        email_pattern = r'\b([a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,})\b'
        result["email_addresses"] = list(set(re.findall(email_pattern, text)))
        
        # Reference numbers
        ref_patterns = [
            (r'RF(?:S)?\s*#?\s*(\d+)', 'RFS_Certifications'),
            (r'NHVAS\s+Accreditation\s+No\.?\s*(\d+)', 'NHVAS_Numbers'),
            (r'Registration\s+Number\s*#?\s*(\d+)', 'Registration_Numbers'),
        ]
        for pattern, key in ref_patterns:
            matches = re.findall(pattern, text, re.IGNORECASE)
            if matches:
                result["reference_numbers"].extend([f"{key}: {m}" for m in matches])
        
        return result

    @staticmethod
    def save_results(results: Dict[str, Any], output_path: str):
        """Save results to JSON file"""
        try:
            with open(output_path, 'w', encoding='utf-8') as f:
                json.dump(results, f, indent=2, ensure_ascii=False)
            logger.info(f"๐Ÿ’พ Results saved to {output_path}")
        except Exception as e:
            logger.error(f"Failed to save results: {e}")

    @staticmethod
    def export_to_excel(results: Dict[str, Any], excel_path: str):
        """Export results to Excel with improved formatting"""
        try:
            with pd.ExcelWriter(excel_path, engine='openpyxl') as writer:
                # Summary sheet
                summary_data = []
                extraction_summary = results.get("extraction_summary", {})
                for key, value in extraction_summary.items():
                    summary_data.append({"Metric": key.replace("_", " ").title(), "Value": value})
                pd.DataFrame(summary_data).to_excel(writer, sheet_name='Summary', index=False)
                
                # Key-value pairs
                kv_pairs = results.get("extracted_data", {}).get("key_value_pairs", {})
                if kv_pairs:
                    kv_df = pd.DataFrame(list(kv_pairs.items()), columns=['Key', 'Value'])
                    kv_df.to_excel(writer, sheet_name='Key_Value_Pairs', index=False)
                
                # Vehicle registrations
                vehicles = results.get("extracted_data", {}).get("vehicle_registrations", [])
                if vehicles:
                    pd.DataFrame(vehicles).to_excel(writer, sheet_name='Vehicle_Registrations', index=False)
                
                # Driver records
                drivers = results.get("extracted_data", {}).get("driver_records", [])
                if drivers:
                    pd.DataFrame(drivers).to_excel(writer, sheet_name='Driver_Records', index=False)
                
                # Compliance summary
                compliance = results.get("extracted_data", {}).get("compliance_summary", {})
                if compliance.get("standards_compliance"):
                    comp_df = pd.DataFrame(list(compliance["standards_compliance"].items()), 
                                           columns=['Standard', 'Compliance_Code'])
                    comp_df.to_excel(writer, sheet_name='Compliance_Standards', index=False)
                
                logger.info(f"๐Ÿ“Š Results exported to Excel: {excel_path}")
        except Exception as e:
            logger.error(f"Failed to export to Excel: {e}")

def main():
    if len(sys.argv) < 2:
        print("Usage: python fixed_pdf_extractor.py <pdf_path>")
        sys.exit(1)
    
    pdf_path = Path(sys.argv[1])
    if not pdf_path.exists():
        print(f"โŒ PDF not found: {pdf_path}")
        sys.exit(1)
    
    print("๐Ÿš€ Fixed PDF Data Extractor")
    print("=" * 50)
    
    extractor = FixedPDFExtractor()
    results = extractor.extract_everything(str(pdf_path))
    
    base = pdf_path.stem
    output_dir = pdf_path.parent
    
    # Save outputs
    json_path = output_dir / f"{base}_comprehensive_data.json"
    excel_path = output_dir / f"{base}_fixed_extraction.xlsx"
    
    FixedPDFExtractor.save_results(results, str(json_path))
    FixedPDFExtractor.export_to_excel(results, str(excel_path))
    
    print("\n๐Ÿ’พ OUTPUT FILES:")
    print(f"   ๐Ÿ“„ JSON Data: {json_path}")
    print(f"   ๐Ÿ“Š Excel Data: {excel_path}")
    print(f"\nโœจ FIXED EXTRACTION COMPLETE!")

if __name__ == "__main__":
    main()