File size: 34,135 Bytes
2e237ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
#!/usr/bin/env python3
import re
import json
import sys
from docx import Document
from docx.oxml.ns import qn
from master_key import TABLE_SCHEMAS, HEADING_PATTERNS, PARAGRAPH_PATTERNS

def normalize_header_label(s: str) -> str:
    """Normalize a header/label by stripping parentheticals & punctuation."""
    s = re.sub(r"\s+", " ", s.strip())
    # remove content in parentheses/brackets
    s = re.sub(r"\([^)]*\)", "", s)
    s = re.sub(r"\[[^]]*\]", "", s)
    # unify slashes and hyphens, collapse spaces
    s = s.replace("–", "-").replace("β€”", "-").replace("/", " / ").replace("  ", " ")
    return s.strip()

# Canonical label aliases for Vehicle/Maintenance/General headers
LABEL_ALIASES = {
    # Vehicle Registration (Maintenance)
    "roadworthiness certificates": "Roadworthiness Certificates",
    "maintenance records": "Maintenance Records",
    "daily checks": "Daily Checks",
    "fault recording / reporting": "Fault Recording/ Reporting",
    "fault repair": "Fault Repair",

    # Vehicle Registration (Mass)
    "sub contracted vehicles statement of compliance": "Sub-contracted Vehicles Statement of Compliance",
    "weight verification records": "Weight Verification Records",
    "rfs suspension certification #": "RFS Suspension Certification #",
    "suspension system maintenance": "Suspension System Maintenance",
    "trip records": "Trip Records",
    "fault recording/ reporting on suspension system": "Fault Recording/ Reporting on Suspension System",

    # Common
    "registration number": "Registration Number",
    "no.": "No.",
    "sub contractor": "Sub contractor",
    "sub-contractor": "Sub contractor",
}

def looks_like_operator_declaration(context):
    """True iff heading says Operator Declaration and headers include Print Name + Position Title."""
    heading = (context.get("heading") or "").strip().lower()
    headers = " ".join(context.get("headers") or []).lower()
    return (
        "operator declaration" in heading
        and "print name" in headers
        and "position" in headers
        and "title" in headers
    )

def looks_like_auditor_declaration(context):
    heading = (context.get("heading") or "").strip().lower()
    headers = " ".join(context.get("headers") or []).lower()
    return (
        "auditor declaration" in heading
        and "print name" in headers
        and ("nhvr" in headers or "auditor registration number" in headers)
    )

# --- NEW: header-only fallback that ignores headings and just keys on the two column names
def extract_operator_declaration_by_headers_from_end(doc):
    """
    Scan tables from the end; if a table's first row contains both
    'Print Name' AND 'Position Title' (case-insensitive), extract red text
    from the data rows into:
        {"Print Name": [...], "Position Title": [...]}
    """
    for tbl in reversed(doc.tables):
        if len(tbl.rows) < 2:
            continue  # need header + at least one data row

        headers_norm = [normalize_header_label(c.text).lower() for c in tbl.rows[0].cells]
        has_print   = any("print name" in h for h in headers_norm)
        has_pos_tit = any(("position title" in h) or ("position" in h and "title" in h) for h in headers_norm)
        if not (has_print and has_pos_tit):
            continue

        idx_print = next((i for i, h in enumerate(headers_norm) if "print name" in h), None)
        idx_pos   = next((i for i, h in enumerate(headers_norm) if "position title" in h), None)
        if idx_pos is None:
            idx_pos = next((i for i, h in enumerate(headers_norm) if ("position" in h and "title" in h)), None)

        result = {"Print Name": [], "Position Title": []}
        for row in tbl.rows[1:]:
            if idx_print is not None and idx_print < len(row.cells):
                cell = row.cells[idx_print]
                reds = [r.text for p in cell.paragraphs for r in p.runs if is_red_font(r) and r.text]
                reds = coalesce_numeric_runs(reds)
                txt  = normalize_text(" ".join(reds))
                if txt:
                    result["Print Name"].append(txt)

            if idx_pos is not None and idx_pos < len(row.cells):
                cell = row.cells[idx_pos]
                reds = [r.text for p in cell.paragraphs for r in p.runs if is_red_font(r) and r.text]
                reds = coalesce_numeric_runs(reds)
                txt  = normalize_text(" ".join(reds))
                if txt:
                    result["Position Title"].append(txt)

        if result["Print Name"] or result["Position Title"]:
            return {k: v for k, v in result.items() if v}

    return None
# --- end NEW helper

def canonicalize_label(s: str) -> str:
    key = normalize_header_label(s).lower()
    key = re.sub(r"\s+", " ", key)
    return LABEL_ALIASES.get(key, s)

def bag_similarity(a: str, b: str) -> float:
    """Loose bag-of-words similarity for header↔label matching."""
    aw = {w for w in re.split(r"[^A-Za-z0-9#]+", normalize_header_label(a).lower()) if len(w) > 2 or w in {"#","no"}}
    bw = {w for w in re.split(r"[^A-Za-z0-9#]+", normalize_header_label(b).lower()) if len(w) > 2 or w in {"#","no"}}
    if not aw or not bw: 
        return 0.0
    inter = len(aw & bw)
    return inter / max(len(aw), len(bw))

def coalesce_numeric_runs(text_list):
    """
    If a cell yields ['4','5','6','9','8','7','1','2','3'] etc., join continuous single-char digit runs.
    Returns ['456987123'] instead of many singles. Non-digit tokens are preserved.
    """
    out, buf = [], []
    for t in text_list:
        if len(t) == 1 and t.isdigit():
            buf.append(t)
        else:
            if buf:
                out.append("".join(buf))
                buf = []
            out.append(t)
    if buf:
        out.append("".join(buf))
    return out

def is_red_font(run):
    """Enhanced red font detection with better color checking"""
    col = run.font.color
    if col and col.rgb:
        r, g, b = col.rgb
        if r > 150 and g < 100 and b < 100 and (r-g) > 30 and (r-b) > 30:
            return True
    rPr = getattr(run._element, "rPr", None)
    if rPr is not None:
        clr = rPr.find(qn('w:color'))
        if clr is not None:
            val = clr.get(qn('w:val'))
            if val and re.fullmatch(r"[0-9A-Fa-f]{6}", val):
                rr, gg, bb = int(val[:2], 16), int(val[2:4], 16), int(val[4:], 16)
                if rr > 150 and gg < 100 and bb < 100 and (rr-gg) > 30 and (rr-bb) > 30:
                    return True
    return False

def _prev_para_text(tbl):
    """Get text from previous paragraph before table"""
    prev = tbl._tbl.getprevious()
    while prev is not None and not prev.tag.endswith("}p"):
        prev = prev.getprevious()
    if prev is None:
        return ""
    return "".join(node.text for node in prev.iter() if node.tag.endswith("}t") and node.text).strip()

def normalize_text(text):
    """Normalize text for better matching"""
    return re.sub(r'\s+', ' ', text.strip())

def fuzzy_match_heading(heading, patterns):
    """Check if heading matches any pattern with fuzzy matching"""
    heading_norm = normalize_text(heading.upper())
    for pattern in patterns:
        if re.search(pattern, heading_norm, re.IGNORECASE):
            return True
    return False

def get_table_context(tbl):
    """Get comprehensive context information for table"""
    heading = normalize_text(_prev_para_text(tbl))
    headers = [normalize_text(c.text) for c in tbl.rows[0].cells if c.text.strip()]
    col0 = [normalize_text(r.cells[0].text) for r in tbl.rows if r.cells[0].text.strip()]
    first_cell = normalize_text(tbl.rows[0].cells[0].text) if tbl.rows else ""
    all_cells = []
    for row in tbl.rows:
        for cell in row.cells:
            text = normalize_text(cell.text)
            if text:
                all_cells.append(text)
    return {
        'heading': heading,
        'headers': headers,
        'col0': col0,
        'first_cell': first_cell,
        'all_cells': all_cells,
        'num_rows': len(tbl.rows),
        'num_cols': len(tbl.rows[0].cells) if tbl.rows else 0
    }

def calculate_schema_match_score(schema_name, spec, context):
    """Enhanced calculate match score - IMPROVED for Vehicle Registration tables"""
    score = 0
    reasons = []
    
    # 🎯 VEHICLE REGISTRATION BOOST
    if "Vehicle Registration" in schema_name:
        vehicle_keywords = ["registration", "vehicle", "sub-contractor", "weight verification", "rfs suspension"]
        table_text = " ".join(context['headers']).lower() + " " + context['heading'].lower()
        keyword_matches = sum(1 for keyword in vehicle_keywords if keyword in table_text)
        if keyword_matches >= 2:
            score += 150  # Very high boost for vehicle tables
            reasons.append(f"Vehicle Registration keywords: {keyword_matches}/5")
        elif keyword_matches >= 1:
            score += 75   # Medium boost
            reasons.append(f"Some Vehicle Registration keywords: {keyword_matches}/5")
    
    # 🎯 SUMMARY TABLE BOOST (existing logic)
    if "Summary" in schema_name and "details" in " ".join(context['headers']).lower():
        score += 100
        reasons.append(f"Summary schema with DETAILS column - perfect match")
    
    if "Summary" not in schema_name and "details" in " ".join(context['headers']).lower():
        score -= 75
        reasons.append(f"Non-summary schema penalized for DETAILS column presence")
    
    # Context exclusions
    if spec.get("context_exclusions"):
        table_text = " ".join(context['headers']).lower() + " " + context['heading'].lower()
        for exclusion in spec["context_exclusions"]:
            if exclusion.lower() in table_text:
                score -= 50
                reasons.append(f"Context exclusion penalty: '{exclusion}' found")
    
    # Context keywords
    if spec.get("context_keywords"):
        table_text = " ".join(context['headers']).lower() + " " + context['heading'].lower()
        keyword_matches = 0
        for keyword in spec["context_keywords"]:
            if keyword.lower() in table_text:
                keyword_matches += 1
        
        if keyword_matches > 0:
            score += keyword_matches * 15
            reasons.append(f"Context keyword matches: {keyword_matches}/{len(spec['context_keywords'])}")
    
    # Direct first cell match
    if context['first_cell'] and context['first_cell'].upper() == schema_name.upper():
        score += 100
        reasons.append(f"Direct first cell match: '{context['first_cell']}'")
    
    # Heading pattern matching
    if spec.get("headings"):
        for h in spec["headings"]:
            if fuzzy_match_heading(context['heading'], [h["text"]]):
                score += 50
                reasons.append(f"Heading match: '{context['heading']}'")
                break
    
    # Column header matching
    if spec.get("columns"):
        cols = [normalize_text(col) for col in spec["columns"]]
        matches = 0
        for col in cols:
            if any(col.upper() in h.upper() for h in context['headers']):
                matches += 1
        if matches == len(cols):
            score += 60
            reasons.append(f"All column headers match: {cols}")
        elif matches > 0:
            score += matches * 20
            reasons.append(f"Partial column matches: {matches}/{len(cols)}")
    
    # Label matching for left-oriented tables
    if spec.get("orientation") == "left":
        labels = [normalize_text(lbl) for lbl in spec["labels"]]
        matches = 0
        for lbl in labels:
            if any(lbl.upper() in c.upper() or c.upper() in lbl.upper() for c in context['col0']):
                matches += 1
        if matches > 0:
            score += (matches / len(labels)) * 30
            reasons.append(f"Left orientation label matches: {matches}/{len(labels)}")
    
    # 🎯 ENHANCED Label matching for row1-oriented tables (Vehicle Registration)
    elif spec.get("orientation") == "row1":
        labels = [normalize_text(lbl) for lbl in spec["labels"]]
        matches = 0
        for lbl in labels:
            if any(lbl.upper() in h.upper() or h.upper() in lbl.upper() for h in context['headers']):
                matches += 1
            elif any(word.upper() in " ".join(context['headers']).upper() for word in lbl.split() if len(word) > 3):
                matches += 0.5  # Partial credit
        if matches > 0:
            score += (matches / len(labels)) * 40
            reasons.append(f"Row1 orientation header matches: {matches}/{len(labels)}")
    
    # Special handling for Declaration tables (existing logic)
    if schema_name == "Operator Declaration" and context['first_cell'].upper() == "PRINT NAME":
        if "OPERATOR DECLARATION" in context['heading'].upper():
            score += 80
            reasons.append("Operator Declaration context match")
        elif any("MANAGER" in cell.upper() for cell in context['all_cells']):
            score += 60
            reasons.append("Manager found in cells (likely Operator Declaration)")
    
    if schema_name == "NHVAS Approved Auditor Declaration" and context['first_cell'].upper() == "PRINT NAME":
        if any("MANAGER" in cell.upper() for cell in context['all_cells']):
            score -= 50
            reasons.append("Penalty: Manager found (not auditor)")
    
    return score, reasons

def match_table_schema(tbl):
    """Improved table schema matching with scoring system"""
    context = get_table_context(tbl)
    # Auditor Declaration first
    if ("print name" in " ".join(context.get("headers", [])).lower() and
        "auditor" in " ".join(context.get("headers", [])).lower()):
        return "NHVAS Approved Auditor Declaration"
    # NEW: prioritize Auditor Declaration to avoid misclassification
    if looks_like_auditor_declaration(context):
        return "NHVAS Approved Auditor Declaration"
    # hard-match Operator Declaration first (high priority, avoids misclassification)
    if looks_like_operator_declaration(context):
        return "Operator Declaration"
    best_match = None
    best_score = 0
    for name, spec in TABLE_SCHEMAS.items():
        score, reasons = calculate_schema_match_score(name, spec, context)
        if score > best_score:
            best_score = score
            best_match = name
    if best_score >= 20:
        return best_match
    return None

def check_multi_schema_table(tbl):
    """Check if table contains multiple schemas and split appropriately"""
    context = get_table_context(tbl)
    operator_labels = ["Operator name (Legal entity)", "NHVAS Accreditation No.", "Registered trading name/s", 
                      "Australian Company Number", "NHVAS Manual"]
    contact_labels = ["Operator business address", "Operator Postal address", "Email address", "Operator Telephone Number"]
    has_operator = any(any(op_lbl.upper() in cell.upper() for op_lbl in operator_labels) for cell in context['col0'])
    has_contact = any(any(cont_lbl.upper() in cell.upper() for cont_lbl in contact_labels) for cell in context['col0'])
    if has_operator and has_contact:
        return ["Operator Information", "Operator contact details"]
    return None

def extract_multi_schema_table(tbl, schemas):
    """Extract data from table with multiple schemas"""
    result = {}
    for schema_name in schemas:
        if schema_name not in TABLE_SCHEMAS:
            continue
        spec = TABLE_SCHEMAS[schema_name]
        schema_data = {}
        for ri, row in enumerate(tbl.rows):
            if ri == 0:
                continue
            row_label = normalize_text(row.cells[0].text)
            belongs_to_schema = False
            matched_label = None
            for spec_label in spec["labels"]:
                spec_norm = normalize_text(spec_label).upper()
                row_norm = row_label.upper()
                if spec_norm == row_norm or spec_norm in row_norm or row_norm in spec_norm:
                    belongs_to_schema = True
                    matched_label = spec_label
                    break
            if not belongs_to_schema:
                continue
            for ci, cell in enumerate(row.cells):
                red_txt = "".join(run.text for p in cell.paragraphs for run in p.runs if is_red_font(run)).strip()
                if red_txt:
                    if matched_label not in schema_data:
                        schema_data[matched_label] = []
                    if red_txt not in schema_data[matched_label]:
                        schema_data[matched_label].append(red_txt)
        if schema_data:
            result[schema_name] = schema_data
    return result

def extract_table_data(tbl, schema_name, spec):
    """Extract red text data from table based on schema – per-row repeats for specific tables."""

    # ───────────────────────────────────────────────────────────────────────────
    # OPERATOR DECLARATION (row1 headers: Print Name | Position Title)
    # ───────────────────────────────────────────────────────────────────────────
    if schema_name == "Operator Declaration":
        print(f"    🧾 EXTRACTION FIX: Processing Operator Declaration table")

        labels = spec["labels"]  # ["Print Name", "Position Title"]
        canonical_labels = {canonicalize_label(lbl): lbl for lbl in labels}

        collected = {lbl: [] for lbl in labels}

        if len(tbl.rows) < 2:
            print(f"    ❌ Operator Declaration table has less than 2 rows")
            return {}

        # map header cells β†’ labels (row1 orientation)
        header_row = tbl.rows[0]
        column_mapping = {}
        print(f"    πŸ“‹ Mapping {len(header_row.cells)} header cells to labels")

        for col_idx, cell in enumerate(header_row.cells):
            raw_h = normalize_text(cell.text)
            header_text = normalize_header_label(raw_h)
            if not header_text:
                continue
            print(f"      Column {col_idx}: '{raw_h}'")

            # alias/canonical first
            canon = canonicalize_label(header_text)
            if canon in canonical_labels:
                best_label = canonical_labels[canon]
                print(f"        βœ… Mapped to: '{best_label}' (alias)")
                column_mapping[col_idx] = best_label
                continue

            # else bag-of-words similarity
            best_label, best_score = None, 0.0
            for canon_lab, original_lab in canonical_labels.items():
                s = bag_similarity(header_text, canon_lab)
                if s > best_score:
                    best_score, best_label = s, original_lab

            if best_label and best_score >= 0.40:
                print(f"        βœ… Mapped to: '{best_label}' (score: {best_score:.2f})")
                column_mapping[col_idx] = best_label
            else:
                print(f"        ⚠️ No mapping found for '{raw_h}'")

        print(f"    πŸ“Š Total column mappings: {len(column_mapping)}")

        # collect red text from the (usually single) data row
        for row_idx in range(1, len(tbl.rows)):
            row = tbl.rows[row_idx]
            print(f"      πŸ“Œ Processing data row {row_idx}")
            for col_idx, cell in enumerate(row.cells):
                if col_idx not in column_mapping:
                    continue
                label = column_mapping[col_idx]
                reds = [run.text for p in cell.paragraphs for run in p.runs if is_red_font(run) and run.text]
                if not reds:
                    continue
                reds = coalesce_numeric_runs(reds)
                red_txt = normalize_text(" ".join(reds))
                if not red_txt:
                    continue
                print(f"        πŸ”΄ Found red text in '{label}': '{red_txt}'")
                collected[label].append(red_txt)

        result = {k: v for k, v in collected.items() if v}
        print(f"    βœ… Operator Declaration extracted: {len(result)} columns with data")
        return result

    # ───────────────────────────────────────────────────────────────────────────
    # A) Vehicle Registration tables (per-row accumulation; NO dedupe)
    # ───────────────────────────────────────────────────────────────────────────
    if "Vehicle Registration" in schema_name:
        print(f"    πŸš— EXTRACTION FIX: Processing Vehicle Registration table")

        labels = spec["labels"]
        canonical_labels = {canonicalize_label(lbl): lbl for lbl in labels}

        collected = {lbl: [] for lbl in labels}   # ← keep every row value
        unmapped_bucket = {}

        if len(tbl.rows) < 2:
            print(f"    ❌ Vehicle table has less than 2 rows")
            return {}

        header_row = tbl.rows[0]
        column_mapping = {}
        print(f"    πŸ“‹ Mapping {len(header_row.cells)} header cells to labels")

        for col_idx, cell in enumerate(header_row.cells):
            raw_h = normalize_text(cell.text)
            header_text = normalize_header_label(raw_h)
            if not header_text:
                continue
            print(f"      Column {col_idx}: '{raw_h}'")

            # Try alias/canonical first
            canon = canonicalize_label(header_text)
            if canon in canonical_labels:
                best_label = canonical_labels[canon]
                print(f"        βœ… Mapped to: '{best_label}' (alias)")
                column_mapping[col_idx] = best_label
                continue

            # Else bag-of-words similarity
            best_label, best_score = None, 0.0
            for canon_lab, original_lab in canonical_labels.items():
                s = bag_similarity(header_text, canon_lab)
                if s > best_score:
                    best_score, best_label = s, original_lab

            if best_label and best_score >= 0.40:
                print(f"        βœ… Mapped to: '{best_label}' (score: {best_score:.2f})")
                column_mapping[col_idx] = best_label
            else:
                print(f"        ⚠️ No mapping found for '{raw_h}'")
                unmapped_bucket[raw_h] = []

        print(f"    πŸ“Š Total column mappings: {len(column_mapping)}")

        header_texts = [normalize_text(hc.text) for hc in header_row.cells]
        for row_idx in range(1, len(tbl.rows)):
            row = tbl.rows[row_idx]
            print(f"      πŸ“Œ Processing data row {row_idx}")
            for col_idx, cell in enumerate(row.cells):
                reds = [run.text for p in cell.paragraphs for run in p.runs if is_red_font(run) and run.text]
                if not reds:
                    continue
                reds = coalesce_numeric_runs(reds)
                red_txt = normalize_text(" ".join(reds))
                if not red_txt:
                    continue

                if col_idx in column_mapping:
                    label = column_mapping[col_idx]
                    print(f"        πŸ”΄ Found red text in '{label}': '{red_txt}'")
                    collected[label].append(red_txt)  # ← append every occurrence
                else:
                    header_name = header_texts[col_idx] if col_idx < len(header_texts) else f"(unmapped col {col_idx})"
                    unmapped_bucket.setdefault(header_name, []).append(red_txt)

        result = {k: v for k, v in collected.items() if v}
        if unmapped_bucket:
            result.update({f"UNMAPPED::{k}": v for k, v in unmapped_bucket.items() if v})
        print(f"    βœ… Vehicle Registration extracted: {len(result)} columns with data")
        return result

    # ───────────────────────────────────────────────────────────────────────────
    # B) Driver / Scheduler Records Examined (per-row accumulation; NO dedupe)
    # ───────────────────────────────────────────────────────────────────────────
    if "Driver / Scheduler" in schema_name:
        print(f"    πŸ‘€ EXTRACTION FIX: Processing Driver / Scheduler table")

        labels = spec["labels"]
        canonical_labels = {canonicalize_label(lbl): lbl for lbl in labels}

        collected = {lbl: [] for lbl in labels}   # ← keep every row value
        unmapped_bucket = {}

        if len(tbl.rows) < 2:
            print(f"    ❌ Driver/Scheduler table has less than 2 rows")
            return {}

        header_row = tbl.rows[0]
        column_mapping = {}
        print(f"    πŸ“‹ Mapping {len(header_row.cells)} header cells to labels")

        for col_idx, cell in enumerate(header_row.cells):
            raw_h = normalize_text(cell.text)
            header_text = normalize_header_label(raw_h)
            if not header_text:
                continue
            print(f"      Column {col_idx}: '{raw_h}'")

            # Try alias/canonical first (rarely used here, but safe)
            canon = canonicalize_label(header_text)
            if canon in canonical_labels:
                best_label = canonical_labels[canon]
                print(f"        βœ… Mapped to: '{best_label}' (alias)")
                column_mapping[col_idx] = best_label
                continue

            # Else bag-of-words similarity (good for long headings)
            best_label, best_score = None, 0.0
            for canon_lab, original_lab in canonical_labels.items():
                s = bag_similarity(header_text, canon_lab)
                if s > best_score:
                    best_score, best_label = s, original_lab

            if best_label and best_score >= 0.40:
                print(f"        βœ… Mapped to: '{best_label}' (score: {best_score:.2f})")
                column_mapping[col_idx] = best_label
            else:
                print(f"        ⚠️ No mapping found for '{raw_h}'")
                unmapped_bucket[raw_h] = []

        print(f"    πŸ“Š Total column mappings: {len(column_mapping)}")

        header_texts = [normalize_text(hc.text) for hc in header_row.cells]
        for row_idx in range(1, len(tbl.rows)):
            row = tbl.rows[row_idx]
            print(f"      πŸ“Œ Processing data row {row_idx}")
            for col_idx, cell in enumerate(row.cells):
                reds = [run.text for p in cell.paragraphs for run in p.runs if is_red_font(run) and run.text]
                if not reds:
                    continue
                reds = coalesce_numeric_runs(reds)
                red_txt = normalize_text(" ".join(reds))
                if not red_txt:
                    continue

                if col_idx in column_mapping:
                    label = column_mapping[col_idx]
                    print(f"        πŸ”΄ Found red text in '{label}': '{red_txt}'")
                    collected[label].append(red_txt)  # ← append every occurrence
                else:
                    header_name = header_texts[col_idx] if col_idx < len(header_texts) else f"(unmapped col {col_idx})"
                    unmapped_bucket.setdefault(header_name, []).append(red_txt)

        result = {k: v for k, v in collected.items() if v}
        if unmapped_bucket:
            result.update({f"UNMAPPED::{k}": v for k, v in unmapped_bucket.items() if v})
        print(f"    βœ… Driver / Scheduler extracted: {len(result)} columns with data")
        return result

    # ───────────────────────────────────────────────────────────────────────────
    # C) Generic tables (unchanged: WITH dedupe)
    # ───────────────────────────────────────────────────────────────────────────
    labels = spec["labels"] + [schema_name]
    collected = {lbl: [] for lbl in labels}
    seen = {lbl: set() for lbl in labels}
    by_col = (spec.get("orientation") == "row1")
    start_row = 1 if by_col else 0
    rows = tbl.rows[start_row:]

    for ri, row in enumerate(rows):
        for ci, cell in enumerate(row.cells):
            reds = [run.text for p in cell.paragraphs for run in p.runs if is_red_font(run) and run.text]
            if not reds:
                continue
            reds = coalesce_numeric_runs(reds)
            red_txt = normalize_text(" ".join(reds))
            if not red_txt:
                continue

            if by_col:
                if ci < len(spec["labels"]):
                    lbl = spec["labels"][ci]
                else:
                    lbl = schema_name
            else:
                raw_label = normalize_text(row.cells[0].text)
                lbl = None
                for spec_label in spec["labels"]:
                    if normalize_text(spec_label).upper() == raw_label.upper():
                        lbl = spec_label
                        break
                if not lbl:
                    a_raw = normalize_header_label(raw_label).upper()
                    for spec_label in spec["labels"]:
                        a_spec = normalize_header_label(spec_label).upper()
                        if a_spec in a_raw or a_raw in a_spec:
                            lbl = spec_label
                            break
                if not lbl:
                    lbl = schema_name

            if red_txt not in seen[lbl]:
                seen[lbl].add(red_txt)
                collected[lbl].append(red_txt)

    return {k: v for k, v in collected.items() if v}

def extract_red_text(input_doc):
    # input_doc: docx.Document object or file path
    if isinstance(input_doc, str):
        doc = Document(input_doc)
    else:
        doc = input_doc
    out = {}
    table_count = 0
    for tbl in doc.tables:
        table_count += 1
        multi_schemas = check_multi_schema_table(tbl)
        if multi_schemas:
            multi_data = extract_multi_schema_table(tbl, multi_schemas)
            for schema_name, schema_data in multi_data.items():
                if schema_data:
                    if schema_name in out:
                        for k, v in schema_data.items():
                            if k in out[schema_name]:
                                out[schema_name][k].extend(v)
                            else:
                                out[schema_name][k] = v
                    else:
                        out[schema_name] = schema_data
            continue
        schema = match_table_schema(tbl)
        if not schema:
            continue
        spec = TABLE_SCHEMAS[schema]
        data = extract_table_data(tbl, schema, spec)
        if data:
            if schema in out:
                for k, v in data.items():
                    if k in out[schema]:
                        out[schema][k].extend(v)
                    else:
                        out[schema][k] = v
            else:
                out[schema] = data

    # paragraphs (FIX: do not return early; build full 'paras' then attach)
    paras = {}
    for idx, para in enumerate(doc.paragraphs):
        red_txt = "".join(r.text for r in para.runs if is_red_font(r)).strip()
        if not red_txt:
            continue
        context = None
        for j in range(idx-1, -1, -1):
            txt = normalize_text(doc.paragraphs[j].text)
            if txt:
                all_patterns = HEADING_PATTERNS["main"] + HEADING_PATTERNS["sub"]
                if any(re.search(p, txt, re.IGNORECASE) for p in all_patterns):
                    context = txt
                    break
        if not context and re.fullmatch(PARAGRAPH_PATTERNS["date_line"], red_txt):
            context = "Date"
        if not context:
            context = "(para)"
        paras.setdefault(context, []).append(red_txt)

    if paras:
        out["paragraphs"] = paras

    # Fallback: ensure we capture the last-page Operator Declaration by headers
    if "Operator Declaration" not in out:
        op_dec = extract_operator_declaration_by_headers_from_end(doc)
        if op_dec:
            out["Operator Declaration"] = op_dec

    return out

def extract_red_text_filelike(input_file, output_file):
    """
    Accepts:
      input_file: file-like object (BytesIO/File) or path
      output_file: file-like object (opened for writing text) or path
    """
    if hasattr(input_file, "seek"):
        input_file.seek(0)
    doc = Document(input_file)
    result = extract_red_text(doc)
    if hasattr(output_file, "write"):
        json.dump(result, output_file, indent=2, ensure_ascii=False)
        output_file.flush()
    else:
        with open(output_file, "w", encoding="utf-8") as f:
            json.dump(result, f, indent=2, ensure_ascii=False)
    return result

if __name__ == "__main__":
    # Support both script and app/file-like usage
    if len(sys.argv) == 3:
        input_docx = sys.argv[1]
        output_json = sys.argv[2]
        doc = Document(input_docx)
        word_data = extract_red_text(doc)
        with open(output_json, 'w', encoding='utf-8') as f:
            json.dump(word_data, f, indent=2, ensure_ascii=False)
        print(json.dumps(word_data, indent=2, ensure_ascii=False))
    else:
        print("To use as a module: extract_red_text_filelike(input_file, output_file)")