Spaces:
Running
Running
File size: 34,135 Bytes
2e237ce |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 |
#!/usr/bin/env python3
import re
import json
import sys
from docx import Document
from docx.oxml.ns import qn
from master_key import TABLE_SCHEMAS, HEADING_PATTERNS, PARAGRAPH_PATTERNS
def normalize_header_label(s: str) -> str:
"""Normalize a header/label by stripping parentheticals & punctuation."""
s = re.sub(r"\s+", " ", s.strip())
# remove content in parentheses/brackets
s = re.sub(r"\([^)]*\)", "", s)
s = re.sub(r"\[[^]]*\]", "", s)
# unify slashes and hyphens, collapse spaces
s = s.replace("β", "-").replace("β", "-").replace("/", " / ").replace(" ", " ")
return s.strip()
# Canonical label aliases for Vehicle/Maintenance/General headers
LABEL_ALIASES = {
# Vehicle Registration (Maintenance)
"roadworthiness certificates": "Roadworthiness Certificates",
"maintenance records": "Maintenance Records",
"daily checks": "Daily Checks",
"fault recording / reporting": "Fault Recording/ Reporting",
"fault repair": "Fault Repair",
# Vehicle Registration (Mass)
"sub contracted vehicles statement of compliance": "Sub-contracted Vehicles Statement of Compliance",
"weight verification records": "Weight Verification Records",
"rfs suspension certification #": "RFS Suspension Certification #",
"suspension system maintenance": "Suspension System Maintenance",
"trip records": "Trip Records",
"fault recording/ reporting on suspension system": "Fault Recording/ Reporting on Suspension System",
# Common
"registration number": "Registration Number",
"no.": "No.",
"sub contractor": "Sub contractor",
"sub-contractor": "Sub contractor",
}
def looks_like_operator_declaration(context):
"""True iff heading says Operator Declaration and headers include Print Name + Position Title."""
heading = (context.get("heading") or "").strip().lower()
headers = " ".join(context.get("headers") or []).lower()
return (
"operator declaration" in heading
and "print name" in headers
and "position" in headers
and "title" in headers
)
def looks_like_auditor_declaration(context):
heading = (context.get("heading") or "").strip().lower()
headers = " ".join(context.get("headers") or []).lower()
return (
"auditor declaration" in heading
and "print name" in headers
and ("nhvr" in headers or "auditor registration number" in headers)
)
# --- NEW: header-only fallback that ignores headings and just keys on the two column names
def extract_operator_declaration_by_headers_from_end(doc):
"""
Scan tables from the end; if a table's first row contains both
'Print Name' AND 'Position Title' (case-insensitive), extract red text
from the data rows into:
{"Print Name": [...], "Position Title": [...]}
"""
for tbl in reversed(doc.tables):
if len(tbl.rows) < 2:
continue # need header + at least one data row
headers_norm = [normalize_header_label(c.text).lower() for c in tbl.rows[0].cells]
has_print = any("print name" in h for h in headers_norm)
has_pos_tit = any(("position title" in h) or ("position" in h and "title" in h) for h in headers_norm)
if not (has_print and has_pos_tit):
continue
idx_print = next((i for i, h in enumerate(headers_norm) if "print name" in h), None)
idx_pos = next((i for i, h in enumerate(headers_norm) if "position title" in h), None)
if idx_pos is None:
idx_pos = next((i for i, h in enumerate(headers_norm) if ("position" in h and "title" in h)), None)
result = {"Print Name": [], "Position Title": []}
for row in tbl.rows[1:]:
if idx_print is not None and idx_print < len(row.cells):
cell = row.cells[idx_print]
reds = [r.text for p in cell.paragraphs for r in p.runs if is_red_font(r) and r.text]
reds = coalesce_numeric_runs(reds)
txt = normalize_text(" ".join(reds))
if txt:
result["Print Name"].append(txt)
if idx_pos is not None and idx_pos < len(row.cells):
cell = row.cells[idx_pos]
reds = [r.text for p in cell.paragraphs for r in p.runs if is_red_font(r) and r.text]
reds = coalesce_numeric_runs(reds)
txt = normalize_text(" ".join(reds))
if txt:
result["Position Title"].append(txt)
if result["Print Name"] or result["Position Title"]:
return {k: v for k, v in result.items() if v}
return None
# --- end NEW helper
def canonicalize_label(s: str) -> str:
key = normalize_header_label(s).lower()
key = re.sub(r"\s+", " ", key)
return LABEL_ALIASES.get(key, s)
def bag_similarity(a: str, b: str) -> float:
"""Loose bag-of-words similarity for headerβlabel matching."""
aw = {w for w in re.split(r"[^A-Za-z0-9#]+", normalize_header_label(a).lower()) if len(w) > 2 or w in {"#","no"}}
bw = {w for w in re.split(r"[^A-Za-z0-9#]+", normalize_header_label(b).lower()) if len(w) > 2 or w in {"#","no"}}
if not aw or not bw:
return 0.0
inter = len(aw & bw)
return inter / max(len(aw), len(bw))
def coalesce_numeric_runs(text_list):
"""
If a cell yields ['4','5','6','9','8','7','1','2','3'] etc., join continuous single-char digit runs.
Returns ['456987123'] instead of many singles. Non-digit tokens are preserved.
"""
out, buf = [], []
for t in text_list:
if len(t) == 1 and t.isdigit():
buf.append(t)
else:
if buf:
out.append("".join(buf))
buf = []
out.append(t)
if buf:
out.append("".join(buf))
return out
def is_red_font(run):
"""Enhanced red font detection with better color checking"""
col = run.font.color
if col and col.rgb:
r, g, b = col.rgb
if r > 150 and g < 100 and b < 100 and (r-g) > 30 and (r-b) > 30:
return True
rPr = getattr(run._element, "rPr", None)
if rPr is not None:
clr = rPr.find(qn('w:color'))
if clr is not None:
val = clr.get(qn('w:val'))
if val and re.fullmatch(r"[0-9A-Fa-f]{6}", val):
rr, gg, bb = int(val[:2], 16), int(val[2:4], 16), int(val[4:], 16)
if rr > 150 and gg < 100 and bb < 100 and (rr-gg) > 30 and (rr-bb) > 30:
return True
return False
def _prev_para_text(tbl):
"""Get text from previous paragraph before table"""
prev = tbl._tbl.getprevious()
while prev is not None and not prev.tag.endswith("}p"):
prev = prev.getprevious()
if prev is None:
return ""
return "".join(node.text for node in prev.iter() if node.tag.endswith("}t") and node.text).strip()
def normalize_text(text):
"""Normalize text for better matching"""
return re.sub(r'\s+', ' ', text.strip())
def fuzzy_match_heading(heading, patterns):
"""Check if heading matches any pattern with fuzzy matching"""
heading_norm = normalize_text(heading.upper())
for pattern in patterns:
if re.search(pattern, heading_norm, re.IGNORECASE):
return True
return False
def get_table_context(tbl):
"""Get comprehensive context information for table"""
heading = normalize_text(_prev_para_text(tbl))
headers = [normalize_text(c.text) for c in tbl.rows[0].cells if c.text.strip()]
col0 = [normalize_text(r.cells[0].text) for r in tbl.rows if r.cells[0].text.strip()]
first_cell = normalize_text(tbl.rows[0].cells[0].text) if tbl.rows else ""
all_cells = []
for row in tbl.rows:
for cell in row.cells:
text = normalize_text(cell.text)
if text:
all_cells.append(text)
return {
'heading': heading,
'headers': headers,
'col0': col0,
'first_cell': first_cell,
'all_cells': all_cells,
'num_rows': len(tbl.rows),
'num_cols': len(tbl.rows[0].cells) if tbl.rows else 0
}
def calculate_schema_match_score(schema_name, spec, context):
"""Enhanced calculate match score - IMPROVED for Vehicle Registration tables"""
score = 0
reasons = []
# π― VEHICLE REGISTRATION BOOST
if "Vehicle Registration" in schema_name:
vehicle_keywords = ["registration", "vehicle", "sub-contractor", "weight verification", "rfs suspension"]
table_text = " ".join(context['headers']).lower() + " " + context['heading'].lower()
keyword_matches = sum(1 for keyword in vehicle_keywords if keyword in table_text)
if keyword_matches >= 2:
score += 150 # Very high boost for vehicle tables
reasons.append(f"Vehicle Registration keywords: {keyword_matches}/5")
elif keyword_matches >= 1:
score += 75 # Medium boost
reasons.append(f"Some Vehicle Registration keywords: {keyword_matches}/5")
# π― SUMMARY TABLE BOOST (existing logic)
if "Summary" in schema_name and "details" in " ".join(context['headers']).lower():
score += 100
reasons.append(f"Summary schema with DETAILS column - perfect match")
if "Summary" not in schema_name and "details" in " ".join(context['headers']).lower():
score -= 75
reasons.append(f"Non-summary schema penalized for DETAILS column presence")
# Context exclusions
if spec.get("context_exclusions"):
table_text = " ".join(context['headers']).lower() + " " + context['heading'].lower()
for exclusion in spec["context_exclusions"]:
if exclusion.lower() in table_text:
score -= 50
reasons.append(f"Context exclusion penalty: '{exclusion}' found")
# Context keywords
if spec.get("context_keywords"):
table_text = " ".join(context['headers']).lower() + " " + context['heading'].lower()
keyword_matches = 0
for keyword in spec["context_keywords"]:
if keyword.lower() in table_text:
keyword_matches += 1
if keyword_matches > 0:
score += keyword_matches * 15
reasons.append(f"Context keyword matches: {keyword_matches}/{len(spec['context_keywords'])}")
# Direct first cell match
if context['first_cell'] and context['first_cell'].upper() == schema_name.upper():
score += 100
reasons.append(f"Direct first cell match: '{context['first_cell']}'")
# Heading pattern matching
if spec.get("headings"):
for h in spec["headings"]:
if fuzzy_match_heading(context['heading'], [h["text"]]):
score += 50
reasons.append(f"Heading match: '{context['heading']}'")
break
# Column header matching
if spec.get("columns"):
cols = [normalize_text(col) for col in spec["columns"]]
matches = 0
for col in cols:
if any(col.upper() in h.upper() for h in context['headers']):
matches += 1
if matches == len(cols):
score += 60
reasons.append(f"All column headers match: {cols}")
elif matches > 0:
score += matches * 20
reasons.append(f"Partial column matches: {matches}/{len(cols)}")
# Label matching for left-oriented tables
if spec.get("orientation") == "left":
labels = [normalize_text(lbl) for lbl in spec["labels"]]
matches = 0
for lbl in labels:
if any(lbl.upper() in c.upper() or c.upper() in lbl.upper() for c in context['col0']):
matches += 1
if matches > 0:
score += (matches / len(labels)) * 30
reasons.append(f"Left orientation label matches: {matches}/{len(labels)}")
# π― ENHANCED Label matching for row1-oriented tables (Vehicle Registration)
elif spec.get("orientation") == "row1":
labels = [normalize_text(lbl) for lbl in spec["labels"]]
matches = 0
for lbl in labels:
if any(lbl.upper() in h.upper() or h.upper() in lbl.upper() for h in context['headers']):
matches += 1
elif any(word.upper() in " ".join(context['headers']).upper() for word in lbl.split() if len(word) > 3):
matches += 0.5 # Partial credit
if matches > 0:
score += (matches / len(labels)) * 40
reasons.append(f"Row1 orientation header matches: {matches}/{len(labels)}")
# Special handling for Declaration tables (existing logic)
if schema_name == "Operator Declaration" and context['first_cell'].upper() == "PRINT NAME":
if "OPERATOR DECLARATION" in context['heading'].upper():
score += 80
reasons.append("Operator Declaration context match")
elif any("MANAGER" in cell.upper() for cell in context['all_cells']):
score += 60
reasons.append("Manager found in cells (likely Operator Declaration)")
if schema_name == "NHVAS Approved Auditor Declaration" and context['first_cell'].upper() == "PRINT NAME":
if any("MANAGER" in cell.upper() for cell in context['all_cells']):
score -= 50
reasons.append("Penalty: Manager found (not auditor)")
return score, reasons
def match_table_schema(tbl):
"""Improved table schema matching with scoring system"""
context = get_table_context(tbl)
# Auditor Declaration first
if ("print name" in " ".join(context.get("headers", [])).lower() and
"auditor" in " ".join(context.get("headers", [])).lower()):
return "NHVAS Approved Auditor Declaration"
# NEW: prioritize Auditor Declaration to avoid misclassification
if looks_like_auditor_declaration(context):
return "NHVAS Approved Auditor Declaration"
# hard-match Operator Declaration first (high priority, avoids misclassification)
if looks_like_operator_declaration(context):
return "Operator Declaration"
best_match = None
best_score = 0
for name, spec in TABLE_SCHEMAS.items():
score, reasons = calculate_schema_match_score(name, spec, context)
if score > best_score:
best_score = score
best_match = name
if best_score >= 20:
return best_match
return None
def check_multi_schema_table(tbl):
"""Check if table contains multiple schemas and split appropriately"""
context = get_table_context(tbl)
operator_labels = ["Operator name (Legal entity)", "NHVAS Accreditation No.", "Registered trading name/s",
"Australian Company Number", "NHVAS Manual"]
contact_labels = ["Operator business address", "Operator Postal address", "Email address", "Operator Telephone Number"]
has_operator = any(any(op_lbl.upper() in cell.upper() for op_lbl in operator_labels) for cell in context['col0'])
has_contact = any(any(cont_lbl.upper() in cell.upper() for cont_lbl in contact_labels) for cell in context['col0'])
if has_operator and has_contact:
return ["Operator Information", "Operator contact details"]
return None
def extract_multi_schema_table(tbl, schemas):
"""Extract data from table with multiple schemas"""
result = {}
for schema_name in schemas:
if schema_name not in TABLE_SCHEMAS:
continue
spec = TABLE_SCHEMAS[schema_name]
schema_data = {}
for ri, row in enumerate(tbl.rows):
if ri == 0:
continue
row_label = normalize_text(row.cells[0].text)
belongs_to_schema = False
matched_label = None
for spec_label in spec["labels"]:
spec_norm = normalize_text(spec_label).upper()
row_norm = row_label.upper()
if spec_norm == row_norm or spec_norm in row_norm or row_norm in spec_norm:
belongs_to_schema = True
matched_label = spec_label
break
if not belongs_to_schema:
continue
for ci, cell in enumerate(row.cells):
red_txt = "".join(run.text for p in cell.paragraphs for run in p.runs if is_red_font(run)).strip()
if red_txt:
if matched_label not in schema_data:
schema_data[matched_label] = []
if red_txt not in schema_data[matched_label]:
schema_data[matched_label].append(red_txt)
if schema_data:
result[schema_name] = schema_data
return result
def extract_table_data(tbl, schema_name, spec):
"""Extract red text data from table based on schema β per-row repeats for specific tables."""
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# OPERATOR DECLARATION (row1 headers: Print Name | Position Title)
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
if schema_name == "Operator Declaration":
print(f" π§Ύ EXTRACTION FIX: Processing Operator Declaration table")
labels = spec["labels"] # ["Print Name", "Position Title"]
canonical_labels = {canonicalize_label(lbl): lbl for lbl in labels}
collected = {lbl: [] for lbl in labels}
if len(tbl.rows) < 2:
print(f" β Operator Declaration table has less than 2 rows")
return {}
# map header cells β labels (row1 orientation)
header_row = tbl.rows[0]
column_mapping = {}
print(f" π Mapping {len(header_row.cells)} header cells to labels")
for col_idx, cell in enumerate(header_row.cells):
raw_h = normalize_text(cell.text)
header_text = normalize_header_label(raw_h)
if not header_text:
continue
print(f" Column {col_idx}: '{raw_h}'")
# alias/canonical first
canon = canonicalize_label(header_text)
if canon in canonical_labels:
best_label = canonical_labels[canon]
print(f" β
Mapped to: '{best_label}' (alias)")
column_mapping[col_idx] = best_label
continue
# else bag-of-words similarity
best_label, best_score = None, 0.0
for canon_lab, original_lab in canonical_labels.items():
s = bag_similarity(header_text, canon_lab)
if s > best_score:
best_score, best_label = s, original_lab
if best_label and best_score >= 0.40:
print(f" β
Mapped to: '{best_label}' (score: {best_score:.2f})")
column_mapping[col_idx] = best_label
else:
print(f" β οΈ No mapping found for '{raw_h}'")
print(f" π Total column mappings: {len(column_mapping)}")
# collect red text from the (usually single) data row
for row_idx in range(1, len(tbl.rows)):
row = tbl.rows[row_idx]
print(f" π Processing data row {row_idx}")
for col_idx, cell in enumerate(row.cells):
if col_idx not in column_mapping:
continue
label = column_mapping[col_idx]
reds = [run.text for p in cell.paragraphs for run in p.runs if is_red_font(run) and run.text]
if not reds:
continue
reds = coalesce_numeric_runs(reds)
red_txt = normalize_text(" ".join(reds))
if not red_txt:
continue
print(f" π΄ Found red text in '{label}': '{red_txt}'")
collected[label].append(red_txt)
result = {k: v for k, v in collected.items() if v}
print(f" β
Operator Declaration extracted: {len(result)} columns with data")
return result
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# A) Vehicle Registration tables (per-row accumulation; NO dedupe)
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
if "Vehicle Registration" in schema_name:
print(f" π EXTRACTION FIX: Processing Vehicle Registration table")
labels = spec["labels"]
canonical_labels = {canonicalize_label(lbl): lbl for lbl in labels}
collected = {lbl: [] for lbl in labels} # β keep every row value
unmapped_bucket = {}
if len(tbl.rows) < 2:
print(f" β Vehicle table has less than 2 rows")
return {}
header_row = tbl.rows[0]
column_mapping = {}
print(f" π Mapping {len(header_row.cells)} header cells to labels")
for col_idx, cell in enumerate(header_row.cells):
raw_h = normalize_text(cell.text)
header_text = normalize_header_label(raw_h)
if not header_text:
continue
print(f" Column {col_idx}: '{raw_h}'")
# Try alias/canonical first
canon = canonicalize_label(header_text)
if canon in canonical_labels:
best_label = canonical_labels[canon]
print(f" β
Mapped to: '{best_label}' (alias)")
column_mapping[col_idx] = best_label
continue
# Else bag-of-words similarity
best_label, best_score = None, 0.0
for canon_lab, original_lab in canonical_labels.items():
s = bag_similarity(header_text, canon_lab)
if s > best_score:
best_score, best_label = s, original_lab
if best_label and best_score >= 0.40:
print(f" β
Mapped to: '{best_label}' (score: {best_score:.2f})")
column_mapping[col_idx] = best_label
else:
print(f" β οΈ No mapping found for '{raw_h}'")
unmapped_bucket[raw_h] = []
print(f" π Total column mappings: {len(column_mapping)}")
header_texts = [normalize_text(hc.text) for hc in header_row.cells]
for row_idx in range(1, len(tbl.rows)):
row = tbl.rows[row_idx]
print(f" π Processing data row {row_idx}")
for col_idx, cell in enumerate(row.cells):
reds = [run.text for p in cell.paragraphs for run in p.runs if is_red_font(run) and run.text]
if not reds:
continue
reds = coalesce_numeric_runs(reds)
red_txt = normalize_text(" ".join(reds))
if not red_txt:
continue
if col_idx in column_mapping:
label = column_mapping[col_idx]
print(f" π΄ Found red text in '{label}': '{red_txt}'")
collected[label].append(red_txt) # β append every occurrence
else:
header_name = header_texts[col_idx] if col_idx < len(header_texts) else f"(unmapped col {col_idx})"
unmapped_bucket.setdefault(header_name, []).append(red_txt)
result = {k: v for k, v in collected.items() if v}
if unmapped_bucket:
result.update({f"UNMAPPED::{k}": v for k, v in unmapped_bucket.items() if v})
print(f" β
Vehicle Registration extracted: {len(result)} columns with data")
return result
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# B) Driver / Scheduler Records Examined (per-row accumulation; NO dedupe)
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
if "Driver / Scheduler" in schema_name:
print(f" π€ EXTRACTION FIX: Processing Driver / Scheduler table")
labels = spec["labels"]
canonical_labels = {canonicalize_label(lbl): lbl for lbl in labels}
collected = {lbl: [] for lbl in labels} # β keep every row value
unmapped_bucket = {}
if len(tbl.rows) < 2:
print(f" β Driver/Scheduler table has less than 2 rows")
return {}
header_row = tbl.rows[0]
column_mapping = {}
print(f" π Mapping {len(header_row.cells)} header cells to labels")
for col_idx, cell in enumerate(header_row.cells):
raw_h = normalize_text(cell.text)
header_text = normalize_header_label(raw_h)
if not header_text:
continue
print(f" Column {col_idx}: '{raw_h}'")
# Try alias/canonical first (rarely used here, but safe)
canon = canonicalize_label(header_text)
if canon in canonical_labels:
best_label = canonical_labels[canon]
print(f" β
Mapped to: '{best_label}' (alias)")
column_mapping[col_idx] = best_label
continue
# Else bag-of-words similarity (good for long headings)
best_label, best_score = None, 0.0
for canon_lab, original_lab in canonical_labels.items():
s = bag_similarity(header_text, canon_lab)
if s > best_score:
best_score, best_label = s, original_lab
if best_label and best_score >= 0.40:
print(f" β
Mapped to: '{best_label}' (score: {best_score:.2f})")
column_mapping[col_idx] = best_label
else:
print(f" β οΈ No mapping found for '{raw_h}'")
unmapped_bucket[raw_h] = []
print(f" π Total column mappings: {len(column_mapping)}")
header_texts = [normalize_text(hc.text) for hc in header_row.cells]
for row_idx in range(1, len(tbl.rows)):
row = tbl.rows[row_idx]
print(f" π Processing data row {row_idx}")
for col_idx, cell in enumerate(row.cells):
reds = [run.text for p in cell.paragraphs for run in p.runs if is_red_font(run) and run.text]
if not reds:
continue
reds = coalesce_numeric_runs(reds)
red_txt = normalize_text(" ".join(reds))
if not red_txt:
continue
if col_idx in column_mapping:
label = column_mapping[col_idx]
print(f" π΄ Found red text in '{label}': '{red_txt}'")
collected[label].append(red_txt) # β append every occurrence
else:
header_name = header_texts[col_idx] if col_idx < len(header_texts) else f"(unmapped col {col_idx})"
unmapped_bucket.setdefault(header_name, []).append(red_txt)
result = {k: v for k, v in collected.items() if v}
if unmapped_bucket:
result.update({f"UNMAPPED::{k}": v for k, v in unmapped_bucket.items() if v})
print(f" β
Driver / Scheduler extracted: {len(result)} columns with data")
return result
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# C) Generic tables (unchanged: WITH dedupe)
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
labels = spec["labels"] + [schema_name]
collected = {lbl: [] for lbl in labels}
seen = {lbl: set() for lbl in labels}
by_col = (spec.get("orientation") == "row1")
start_row = 1 if by_col else 0
rows = tbl.rows[start_row:]
for ri, row in enumerate(rows):
for ci, cell in enumerate(row.cells):
reds = [run.text for p in cell.paragraphs for run in p.runs if is_red_font(run) and run.text]
if not reds:
continue
reds = coalesce_numeric_runs(reds)
red_txt = normalize_text(" ".join(reds))
if not red_txt:
continue
if by_col:
if ci < len(spec["labels"]):
lbl = spec["labels"][ci]
else:
lbl = schema_name
else:
raw_label = normalize_text(row.cells[0].text)
lbl = None
for spec_label in spec["labels"]:
if normalize_text(spec_label).upper() == raw_label.upper():
lbl = spec_label
break
if not lbl:
a_raw = normalize_header_label(raw_label).upper()
for spec_label in spec["labels"]:
a_spec = normalize_header_label(spec_label).upper()
if a_spec in a_raw or a_raw in a_spec:
lbl = spec_label
break
if not lbl:
lbl = schema_name
if red_txt not in seen[lbl]:
seen[lbl].add(red_txt)
collected[lbl].append(red_txt)
return {k: v for k, v in collected.items() if v}
def extract_red_text(input_doc):
# input_doc: docx.Document object or file path
if isinstance(input_doc, str):
doc = Document(input_doc)
else:
doc = input_doc
out = {}
table_count = 0
for tbl in doc.tables:
table_count += 1
multi_schemas = check_multi_schema_table(tbl)
if multi_schemas:
multi_data = extract_multi_schema_table(tbl, multi_schemas)
for schema_name, schema_data in multi_data.items():
if schema_data:
if schema_name in out:
for k, v in schema_data.items():
if k in out[schema_name]:
out[schema_name][k].extend(v)
else:
out[schema_name][k] = v
else:
out[schema_name] = schema_data
continue
schema = match_table_schema(tbl)
if not schema:
continue
spec = TABLE_SCHEMAS[schema]
data = extract_table_data(tbl, schema, spec)
if data:
if schema in out:
for k, v in data.items():
if k in out[schema]:
out[schema][k].extend(v)
else:
out[schema][k] = v
else:
out[schema] = data
# paragraphs (FIX: do not return early; build full 'paras' then attach)
paras = {}
for idx, para in enumerate(doc.paragraphs):
red_txt = "".join(r.text for r in para.runs if is_red_font(r)).strip()
if not red_txt:
continue
context = None
for j in range(idx-1, -1, -1):
txt = normalize_text(doc.paragraphs[j].text)
if txt:
all_patterns = HEADING_PATTERNS["main"] + HEADING_PATTERNS["sub"]
if any(re.search(p, txt, re.IGNORECASE) for p in all_patterns):
context = txt
break
if not context and re.fullmatch(PARAGRAPH_PATTERNS["date_line"], red_txt):
context = "Date"
if not context:
context = "(para)"
paras.setdefault(context, []).append(red_txt)
if paras:
out["paragraphs"] = paras
# Fallback: ensure we capture the last-page Operator Declaration by headers
if "Operator Declaration" not in out:
op_dec = extract_operator_declaration_by_headers_from_end(doc)
if op_dec:
out["Operator Declaration"] = op_dec
return out
def extract_red_text_filelike(input_file, output_file):
"""
Accepts:
input_file: file-like object (BytesIO/File) or path
output_file: file-like object (opened for writing text) or path
"""
if hasattr(input_file, "seek"):
input_file.seek(0)
doc = Document(input_file)
result = extract_red_text(doc)
if hasattr(output_file, "write"):
json.dump(result, output_file, indent=2, ensure_ascii=False)
output_file.flush()
else:
with open(output_file, "w", encoding="utf-8") as f:
json.dump(result, f, indent=2, ensure_ascii=False)
return result
if __name__ == "__main__":
# Support both script and app/file-like usage
if len(sys.argv) == 3:
input_docx = sys.argv[1]
output_json = sys.argv[2]
doc = Document(input_docx)
word_data = extract_red_text(doc)
with open(output_json, 'w', encoding='utf-8') as f:
json.dump(word_data, f, indent=2, ensure_ascii=False)
print(json.dumps(word_data, indent=2, ensure_ascii=False))
else:
print("To use as a module: extract_red_text_filelike(input_file, output_file)") |