Spaces:
Running
Running
File size: 1,503 Bytes
2e237ce |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 |
from os.path import join
from domain.PdfImages import PdfImages
from domain.PdfSegment import PdfSegment
from ports.services.ml_model_service import MLModelService
from adapters.ml.fast_trainer.ParagraphExtractorTrainer import ParagraphExtractorTrainer
from adapters.ml.fast_trainer.model_configuration import MODEL_CONFIGURATION as PARAGRAPH_EXTRACTION_CONFIGURATION
from adapters.ml.pdf_tokens_type_trainer.TokenTypeTrainer import TokenTypeTrainer
from adapters.ml.pdf_tokens_type_trainer.ModelConfiguration import ModelConfiguration
from configuration import ROOT_PATH, service_logger
class FastTrainerAdapter(MLModelService):
def predict_document_layout(self, pdf_images: list[PdfImages]) -> list[PdfSegment]:
return self.predict_layout_fast(pdf_images)
def predict_layout_fast(self, pdf_images: list[PdfImages]) -> list[PdfSegment]:
service_logger.info("Creating Paragraph Tokens [fast]")
pdf_images_obj = pdf_images[0]
token_type_trainer = TokenTypeTrainer([pdf_images_obj.pdf_features], ModelConfiguration())
token_type_trainer.set_token_types(join(ROOT_PATH, "models", "token_type_lightgbm.model"))
trainer = ParagraphExtractorTrainer(
pdfs_features=[pdf_images_obj.pdf_features], model_configuration=PARAGRAPH_EXTRACTION_CONFIGURATION
)
segments = trainer.get_pdf_segments(join(ROOT_PATH, "models", "paragraph_extraction_lightgbm.model"))
pdf_images_obj.remove_images()
return segments
|