Spaces:
Running
Running
File size: 44,668 Bytes
2e237ce |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 |
""" Vision Transformer (ViT) in PyTorch
A PyTorch implement of Vision Transformers as described in
'An Image Is Worth 16 x 16 Words: Transformers for Image Recognition at Scale' - https://arxiv.org/abs/2010.11929
The official jax code is released and available at https://github.com/google-research/vision_transformer
Status/TODO:
* Models updated to be compatible with official impl. Args added to support backward compat for old PyTorch weights.
* Weights ported from official jax impl for 384x384 base and small models, 16x16 and 32x32 patches.
* Trained (supervised on ImageNet-1k) my custom 'small' patch model to 77.9, 'base' to 79.4 top-1 with this code.
* Hopefully find time and GPUs for SSL or unsupervised pretraining on OpenImages w/ ImageNet fine-tune in future.
Acknowledgments:
* The paper authors for releasing code and weights, thanks!
* I fixed my class token impl based on Phil Wang's https://github.com/lucidrains/vit-pytorch ... check it out
for some einops/einsum fun
* Simple transformer style inspired by Andrej Karpathy's https://github.com/karpathy/minGPT
* Bert reference code checks against Huggingface Transformers and Tensorflow Bert
Hacked together by / Copyright 2020 Ross Wightman
"""
import warnings
import math
import torch
from functools import partial
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.checkpoint as checkpoint
from timm.models.layers import drop_path, to_2tuple, trunc_normal_
def _cfg(url="", **kwargs):
return {
"url": url,
"num_classes": 1000,
"input_size": (3, 224, 224),
"pool_size": None,
"crop_pct": 0.9,
"interpolation": "bicubic",
"mean": (0.5, 0.5, 0.5),
"std": (0.5, 0.5, 0.5),
**kwargs,
}
def torch_memory(device, tag=""):
# Checks and prints GPU memory
print(tag, f"{torch.cuda.memory_allocated(device)/1024/1024:.2f} MB USED")
print(tag, f"{torch.cuda.memory_reserved(device)/1024/1024:.2f} MB RESERVED")
print(tag, f"{torch.cuda.max_memory_allocated(device)/1024/1024:.2f} MB USED MAX")
print(tag, f"{torch.cuda.max_memory_reserved(device)/1024/1024:.2f} MB RESERVED MAX")
print("")
class DropPath(nn.Module):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks)."""
def __init__(self, drop_prob=None):
super(DropPath, self).__init__()
self.drop_prob = drop_prob
def forward(self, x):
return drop_path(x, self.drop_prob, self.training)
def extra_repr(self) -> str:
return "p={}".format(self.drop_prob)
class Mlp(nn.Module):
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.0):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Linear(in_features, hidden_features)
self.act = act_layer()
self.fc2 = nn.Linear(hidden_features, out_features)
self.drop = nn.Dropout(drop)
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
# x = self.drop(x)
# commit this for the orignal BERT implement
x = self.fc2(x)
x = self.drop(x)
return x
class CrossAttention(nn.Module):
def __init__(
self,
dim,
num_heads=8,
qkv_bias=False,
qk_scale=None,
attn_drop=0.0,
proj_drop=0.0,
window_size=None,
attn_head_dim=None,
):
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
if attn_head_dim is not None:
head_dim = attn_head_dim
all_head_dim = head_dim * self.num_heads
# NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights
self.scale = qk_scale or head_dim**-0.5
self.q = nn.Linear(dim, all_head_dim, bias=False)
self.kv = nn.Linear(dim, all_head_dim * 2, bias=False)
if qkv_bias:
self.q_bias = nn.Parameter(torch.zeros(all_head_dim))
self.v_bias = nn.Parameter(torch.zeros(all_head_dim))
else:
self.q_bias = None
self.v_bias = None
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(all_head_dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
def forward(self, x, y):
B, N, C = x.shape
qkv_bias = None
if self.q_bias is not None:
kv_bias = torch.cat((torch.zeros_like(self.v_bias, requires_grad=False), self.v_bias))
# qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
kv = F.linear(input=y, weight=self.kv.weight, bias=kv_bias)
kv = kv.reshape(B, N, 2, self.num_heads, -1).permute(2, 0, 3, 1, 4)
k, v = kv[0], kv[1] # make torchscript happy (cannot use tensor as tuple)
q = F.linear(input=x, weight=self.q.weight, bias=self.q_bias)
q = q.reshape(B, N, 1, self.num_heads, -1).permute(2, 0, 3, 1, 4)[0]
q = q * self.scale
attn = q @ k.transpose(-2, -1)
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(B, N, -1)
x = self.proj(x)
x = self.proj_drop(x)
return x
class CrossBlock(nn.Module):
def __init__(
self,
dim,
num_heads,
mlp_ratio=4.0,
qkv_bias=False,
qk_scale=None,
drop=0.0,
attn_drop=0.0,
drop_path=0.0,
init_values=None,
act_layer=nn.GELU,
norm_layer=nn.LayerNorm,
window_size=None,
attn_head_dim=None,
):
super().__init__()
self.norm_vis = norm_layer(dim)
self.norm_grid = norm_layer(dim)
self.vis_attn = CrossAttention(
dim,
num_heads=num_heads,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
attn_drop=attn_drop,
proj_drop=drop,
window_size=window_size,
attn_head_dim=attn_head_dim,
)
self.grid_attn = CrossAttention(
dim,
num_heads=num_heads,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
attn_drop=attn_drop,
proj_drop=drop,
window_size=window_size,
attn_head_dim=attn_head_dim,
)
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
self.norm2_vis = norm_layer(dim)
self.norm2_grid = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.vis_mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
self.grid_mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
self.self_block = CrossSelfBlock(
dim,
num_heads=num_heads,
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
drop=drop,
attn_drop=attn_drop,
drop_path=drop_path,
init_values=init_values,
act_layer=act_layer,
norm_layer=norm_layer,
window_size=window_size,
attn_head_dim=attn_head_dim,
)
if init_values is not None:
self.gamma_vis = nn.Parameter(init_values * torch.ones((dim)), requires_grad=True)
self.gamma_grid = nn.Parameter(init_values * torch.ones((dim)), requires_grad=True)
self.gamma_1 = nn.Parameter(init_values * torch.ones((dim)), requires_grad=True)
self.gamma_2 = nn.Parameter(init_values * torch.ones((dim)), requires_grad=True)
else:
self.gamma_vis, self.gamma_grid, self.gamma_1, self.gamma_2 = None, None, None, None
def cross_att(self, vis_input, grid_input):
# Cross Attention
if self.gamma_vis is None:
vis_att_output = vis_input + self.drop_path(self.vis_attn(self.norm_vis(vis_input), self.norm_grid(grid_input)))
grid_att_output = grid_input + self.drop_path(
self.grid_attn(self.norm_grid(grid_input), self.norm_vis(vis_input))
)
else:
vis_att_output = vis_input + self.drop_path(
self.gamma_vis * self.vis_attn(self.norm_vis(vis_input), self.norm_grid(grid_input))
)
grid_att_output = grid_input + self.drop_path(
self.gamma_grid * self.grid_attn(self.norm_grid(grid_input), self.norm_vis(vis_input))
)
return vis_att_output, grid_att_output
def forward(self, vis_input, grid_input):
vis_att_output, grid_att_output = self.cross_att(vis_input, grid_input)
vis_output, grid_output = self.self_block(vis_att_output, grid_att_output)
if self.gamma_1 is None:
vis_output = vis_output + self.drop_path(self.vis_mlp(self.norm2_vis(vis_output)))
grid_output = grid_output + self.drop_path(self.grid_mlp(self.norm2_grid(grid_output)))
else:
vis_output = vis_output + self.drop_path(self.gamma_1 * self.vis_mlp(self.norm2_vis(vis_output)))
grid_output = grid_output + self.drop_path(self.gamma_2 * self.grid_mlp(self.norm2_grid(grid_output)))
return vis_output, grid_output
class CrossSelfBlock(nn.Module):
def __init__(
self,
dim,
num_heads,
mlp_ratio=4.0,
qkv_bias=False,
qk_scale=None,
drop=0.0,
attn_drop=0.0,
drop_path=0.0,
init_values=None,
act_layer=nn.GELU,
norm_layer=nn.LayerNorm,
window_size=None,
attn_head_dim=None,
):
super().__init__()
self.norm_vis = norm_layer(dim)
self.norm_grid = norm_layer(dim)
self.vis_attn = Attention(
dim,
num_heads=num_heads,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
attn_drop=attn_drop,
proj_drop=drop,
window_size=window_size,
attn_head_dim=attn_head_dim,
)
self.grid_attn = Attention(
dim,
num_heads=num_heads,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
attn_drop=attn_drop,
proj_drop=drop,
window_size=window_size,
attn_head_dim=attn_head_dim,
)
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
mlp_hidden_dim = int(dim * mlp_ratio)
if init_values is not None:
self.gamma_vis = nn.Parameter(init_values * torch.ones((dim)), requires_grad=True)
self.gamma_grid = nn.Parameter(init_values * torch.ones((dim)), requires_grad=True)
else:
self.gamma_vis, self.gamma_grid = None, None
def self_att(self, vis_input, grid_input):
# Cross Attention
if self.gamma_vis is None:
vis_att_output = vis_input + self.drop_path(self.vis_attn(self.norm_vis(vis_input)))
grid_att_output = grid_input + self.drop_path(self.grid_attn(self.norm_grid(grid_input)))
else:
vis_att_output = vis_input + self.drop_path(self.gamma_vis * self.vis_attn(self.norm_vis(vis_input)))
grid_att_output = grid_input + self.drop_path(self.gamma_grid * self.grid_attn(self.norm_grid(grid_input)))
return vis_att_output, grid_att_output
def forward(self, vis_input, grid_input):
vis_att_output, grid_att_output = self.self_att(vis_input, grid_input)
return vis_att_output, grid_att_output
class Attention(nn.Module):
def __init__(
self,
dim,
num_heads=8,
qkv_bias=False,
qk_scale=None,
attn_drop=0.0,
proj_drop=0.0,
window_size=None,
attn_head_dim=None,
):
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
if attn_head_dim is not None:
head_dim = attn_head_dim
all_head_dim = head_dim * self.num_heads
# NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights
self.scale = qk_scale or head_dim**-0.5
self.qkv = nn.Linear(dim, all_head_dim * 3, bias=False)
if qkv_bias:
self.q_bias = nn.Parameter(torch.zeros(all_head_dim))
self.v_bias = nn.Parameter(torch.zeros(all_head_dim))
else:
self.q_bias = None
self.v_bias = None
if window_size:
self.window_size = window_size
self.num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3
self.relative_position_bias_table = nn.Parameter(
torch.zeros(self.num_relative_distance, num_heads)
) # 2*Wh-1 * 2*Ww-1, nH
# cls to token & token 2 cls & cls to cls
# get pair-wise relative position index for each token inside the window
coords_h = torch.arange(window_size[0])
coords_w = torch.arange(window_size[1])
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
relative_coords[:, :, 0] += window_size[0] - 1 # shift to start from 0
relative_coords[:, :, 1] += window_size[1] - 1
relative_coords[:, :, 0] *= 2 * window_size[1] - 1
relative_position_index = torch.zeros(
size=(window_size[0] * window_size[1] + 1,) * 2, dtype=relative_coords.dtype
)
relative_position_index[1:, 1:] = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
relative_position_index[0, 0:] = self.num_relative_distance - 3
relative_position_index[0:, 0] = self.num_relative_distance - 2
relative_position_index[0, 0] = self.num_relative_distance - 1
self.register_buffer("relative_position_index", relative_position_index)
# trunc_normal_(self.relative_position_bias_table, std=.0)
else:
self.window_size = None
self.relative_position_bias_table = None
self.relative_position_index = None
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(all_head_dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
def forward(self, x, rel_pos_bias=None, training_window_size=None):
B, N, C = x.shape
qkv_bias = None
if self.q_bias is not None:
qkv_bias = torch.cat((self.q_bias, torch.zeros_like(self.v_bias, requires_grad=False), self.v_bias))
# qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
qkv = F.linear(input=x, weight=self.qkv.weight, bias=qkv_bias)
qkv = qkv.reshape(B, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
q = q * self.scale
attn = q @ k.transpose(-2, -1)
if self.relative_position_bias_table is not None:
if training_window_size == self.window_size:
relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
self.window_size[0] * self.window_size[1] + 1, self.window_size[0] * self.window_size[1] + 1, -1
) # Wh*Ww,Wh*Ww,nH
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
attn = attn + relative_position_bias.unsqueeze(0)
else:
training_window_size = tuple(training_window_size.tolist())
new_num_relative_distance = (2 * training_window_size[0] - 1) * (2 * training_window_size[1] - 1) + 3
# new_num_relative_dis 为 所有可能的相对位置选项,包含cls-cls,tok-cls,与cls-tok
new_relative_position_bias_table = F.interpolate(
self.relative_position_bias_table[:-3, :]
.permute(1, 0)
.view(1, self.num_heads, 2 * self.window_size[0] - 1, 2 * self.window_size[1] - 1),
size=(2 * training_window_size[0] - 1, 2 * training_window_size[1] - 1),
mode="bicubic",
align_corners=False,
)
new_relative_position_bias_table = new_relative_position_bias_table.view(
self.num_heads, new_num_relative_distance - 3
).permute(1, 0)
new_relative_position_bias_table = torch.cat(
[new_relative_position_bias_table, self.relative_position_bias_table[-3::]], dim=0
)
# get pair-wise relative position index for each token inside the window
coords_h = torch.arange(training_window_size[0])
coords_w = torch.arange(training_window_size[1])
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
relative_coords[:, :, 0] += training_window_size[0] - 1 # shift to start from 0
relative_coords[:, :, 1] += training_window_size[1] - 1
relative_coords[:, :, 0] *= 2 * training_window_size[1] - 1
relative_position_index = torch.zeros(
size=(training_window_size[0] * training_window_size[1] + 1,) * 2, dtype=relative_coords.dtype
)
relative_position_index[1:, 1:] = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
relative_position_index[0, 0:] = new_num_relative_distance - 3
relative_position_index[0:, 0] = new_num_relative_distance - 2
relative_position_index[0, 0] = new_num_relative_distance - 1
relative_position_bias = new_relative_position_bias_table[relative_position_index.view(-1)].view(
training_window_size[0] * training_window_size[1] + 1,
training_window_size[0] * training_window_size[1] + 1,
-1,
) # Wh*Ww,Wh*Ww,nH
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
attn = attn + relative_position_bias.unsqueeze(0)
if rel_pos_bias is not None:
attn = attn + rel_pos_bias
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(B, N, -1)
x = self.proj(x)
x = self.proj_drop(x)
return x
class Block(nn.Module):
def __init__(
self,
dim,
num_heads,
mlp_ratio=4.0,
qkv_bias=False,
qk_scale=None,
drop=0.0,
attn_drop=0.0,
drop_path=0.0,
init_values=None,
act_layer=nn.GELU,
norm_layer=nn.LayerNorm,
window_size=None,
attn_head_dim=None,
):
super().__init__()
self.norm1 = norm_layer(dim)
self.attn = Attention(
dim,
num_heads=num_heads,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
attn_drop=attn_drop,
proj_drop=drop,
window_size=window_size,
attn_head_dim=attn_head_dim,
)
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
if init_values is not None:
self.gamma_1 = nn.Parameter(init_values * torch.ones((dim)), requires_grad=True)
self.gamma_2 = nn.Parameter(init_values * torch.ones((dim)), requires_grad=True)
else:
self.gamma_1, self.gamma_2 = None, None
def forward(self, x, rel_pos_bias=None, training_window_size=None):
if self.gamma_1 is None:
x = x + self.drop_path(
self.attn(self.norm1(x), rel_pos_bias=rel_pos_bias, training_window_size=training_window_size)
)
x = x + self.drop_path(self.mlp(self.norm2(x)))
else:
x = x + self.drop_path(
self.gamma_1 * self.attn(self.norm1(x), rel_pos_bias=rel_pos_bias, training_window_size=training_window_size)
)
x = x + self.drop_path(self.gamma_2 * self.mlp(self.norm2(x)))
return x
class PatchEmbed(nn.Module):
"""Image to Patch Embedding"""
def __init__(self, img_size=[224, 224], patch_size=16, in_chans=3, embed_dim=768, bias=True):
super().__init__()
img_size = to_2tuple(img_size)
patch_size = to_2tuple(patch_size)
num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0])
self.patch_shape = (img_size[0] // patch_size[0], img_size[1] // patch_size[1])
self.num_patches_w = self.patch_shape[0]
self.num_patches_h = self.patch_shape[1]
# the so-called patch_shape is the patch shape during pre-training
self.img_size = img_size
self.patch_size = patch_size
self.num_patches = num_patches
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size, bias=bias)
def forward(self, x, position_embedding=None, **kwargs):
# FIXME look at relaxing size constraints
# assert H == self.img_size[0] and W == self.img_size[1], \
# f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
x = self.proj(x)
Hp, Wp = x.shape[2], x.shape[3]
if position_embedding is not None:
# interpolate the position embedding to the corresponding size
position_embedding = position_embedding.view(1, self.patch_shape[0], self.patch_shape[1], -1).permute(0, 3, 1, 2)
position_embedding = F.interpolate(position_embedding, size=(Hp, Wp), mode="bicubic")
x = x + position_embedding
x = x.flatten(2).transpose(1, 2)
return x, (Hp, Wp)
class HybridEmbed(nn.Module):
"""CNN Feature Map Embedding
Extract feature map from CNN, flatten, project to embedding dim.
"""
def __init__(self, backbone, img_size=[224, 224], feature_size=None, in_chans=3, embed_dim=768):
super().__init__()
assert isinstance(backbone, nn.Module)
img_size = to_2tuple(img_size)
self.img_size = img_size
self.backbone = backbone
if feature_size is None:
with torch.no_grad():
# FIXME this is hacky, but most reliable way of determining the exact dim of the output feature
# map for all networks, the feature metadata has reliable channel and stride info, but using
# stride to calc feature dim requires info about padding of each stage that isn't captured.
training = backbone.training
if training:
backbone.eval()
o = self.backbone(torch.zeros(1, in_chans, img_size[0], img_size[1]))[-1]
feature_size = o.shape[-2:]
feature_dim = o.shape[1]
backbone.train(training)
else:
feature_size = to_2tuple(feature_size)
feature_dim = self.backbone.feature_info.channels()[-1]
self.num_patches = feature_size[0] * feature_size[1]
self.proj = nn.Linear(feature_dim, embed_dim)
def forward(self, x):
x = self.backbone(x)[-1]
x = x.flatten(2).transpose(1, 2)
x = self.proj(x)
return x
class RelativePositionBias(nn.Module):
def __init__(self, window_size, num_heads):
super().__init__()
self.window_size = window_size
self.num_heads = num_heads
self.num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3
self.relative_position_bias_table = nn.Parameter(
torch.zeros(self.num_relative_distance, num_heads)
) # 2*Wh-1 * 2*Ww-1, nH
# cls to token & token 2 cls & cls to cls
# get pair-wise relative position index for each token inside the window
coords_h = torch.arange(window_size[0])
coords_w = torch.arange(window_size[1])
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
relative_coords[:, :, 0] += window_size[0] - 1 # shift to start from 0
relative_coords[:, :, 1] += window_size[1] - 1
relative_coords[:, :, 0] *= 2 * window_size[1] - 1
relative_position_index = torch.zeros(size=(window_size[0] * window_size[1] + 1,) * 2, dtype=relative_coords.dtype)
relative_position_index[1:, 1:] = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
relative_position_index[0, 0:] = self.num_relative_distance - 3
relative_position_index[0:, 0] = self.num_relative_distance - 2
relative_position_index[0, 0] = self.num_relative_distance - 1
self.register_buffer("relative_position_index", relative_position_index)
# trunc_normal_(self.relative_position_bias_table, std=.02)
def forward(self, training_window_size):
if training_window_size == self.window_size:
relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
self.window_size[0] * self.window_size[1] + 1, self.window_size[0] * self.window_size[1] + 1, -1
) # Wh*Ww,Wh*Ww,nH
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
else:
training_window_size = tuple(training_window_size.tolist())
new_num_relative_distance = (2 * training_window_size[0] - 1) * (2 * training_window_size[1] - 1) + 3
# new_num_relative_dis 为 所有可能的相对位置选项,包含cls-cls,tok-cls,与cls-tok
new_relative_position_bias_table = F.interpolate(
self.relative_position_bias_table[:-3, :]
.permute(1, 0)
.view(1, self.num_heads, 2 * self.window_size[0] - 1, 2 * self.window_size[1] - 1),
size=(2 * training_window_size[0] - 1, 2 * training_window_size[1] - 1),
mode="bicubic",
align_corners=False,
)
new_relative_position_bias_table = new_relative_position_bias_table.view(
self.num_heads, new_num_relative_distance - 3
).permute(1, 0)
new_relative_position_bias_table = torch.cat(
[new_relative_position_bias_table, self.relative_position_bias_table[-3::]], dim=0
)
# get pair-wise relative position index for each token inside the window
coords_h = torch.arange(training_window_size[0])
coords_w = torch.arange(training_window_size[1])
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
relative_coords[:, :, 0] += training_window_size[0] - 1 # shift to start from 0
relative_coords[:, :, 1] += training_window_size[1] - 1
relative_coords[:, :, 0] *= 2 * training_window_size[1] - 1
relative_position_index = torch.zeros(
size=(training_window_size[0] * training_window_size[1] + 1,) * 2, dtype=relative_coords.dtype
)
relative_position_index[1:, 1:] = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
relative_position_index[0, 0:] = new_num_relative_distance - 3
relative_position_index[0:, 0] = new_num_relative_distance - 2
relative_position_index[0, 0] = new_num_relative_distance - 1
relative_position_bias = new_relative_position_bias_table[relative_position_index.view(-1)].view(
training_window_size[0] * training_window_size[1] + 1,
training_window_size[0] * training_window_size[1] + 1,
-1,
) # Wh*Ww,Wh*Ww,nH
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
return relative_position_bias
class BEiT(nn.Module):
"""Vision Transformer with support for patch or hybrid CNN input stage"""
def __init__(
self,
img_size=[224, 224],
patch_size=16,
in_chans=3,
grid_chans=64,
num_classes=80,
embed_dim=768,
self_depth=7,
cross_depth=5,
num_heads=12,
mlp_ratio=4.0,
qkv_bias=False,
qk_scale=None,
drop_rate=0.0,
attn_drop_rate=0.0,
drop_path_rate=0.0,
hybrid_backbone=None,
norm_layer=None,
init_values=None,
use_abs_pos_emb=False,
use_rel_pos_bias=False,
use_shared_rel_pos_bias=False,
use_checkpoint=True,
pretrained=None,
out_features=None,
):
super(BEiT, self).__init__()
norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6)
self.num_classes = num_classes
self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models
self.use_checkpoint = use_checkpoint
if hybrid_backbone is not None:
self.patch_embed = HybridEmbed(hybrid_backbone, img_size=img_size, in_chans=in_chans, embed_dim=embed_dim)
else:
self.patch_embed = PatchEmbed(img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim)
self.grid_patch_embed = PatchEmbed(
img_size=img_size, patch_size=patch_size, in_chans=grid_chans, embed_dim=embed_dim, bias=True
)
num_patches = self.patch_embed.num_patches
self.out_features = out_features
self.out_indices = [int(name[5:]) for name in out_features]
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
self.grid_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
# self.mask_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
if use_abs_pos_emb:
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim))
self.grid_pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim))
else:
self.pos_embed = None
self.grid_pos_embed = None
self.pos_drop = nn.Dropout(p=drop_rate)
self.use_shared_rel_pos_bias = use_shared_rel_pos_bias
if use_shared_rel_pos_bias:
self.rel_pos_bias = RelativePositionBias(window_size=self.patch_embed.patch_shape, num_heads=num_heads)
else:
self.rel_pos_bias = None
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, self_depth + cross_depth)] # stochastic depth decay rule
self.use_rel_pos_bias = use_rel_pos_bias
self.blocks = nn.ModuleList(
[
Block(
dim=embed_dim,
num_heads=num_heads,
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
drop=drop_rate,
attn_drop=attn_drop_rate,
drop_path=dpr[i],
norm_layer=norm_layer,
init_values=init_values,
window_size=self.patch_embed.patch_shape if use_rel_pos_bias else None,
)
for i in range(self_depth)
]
)
self.grid_blocks = nn.ModuleList(
[
Block(
dim=embed_dim,
num_heads=num_heads,
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
drop=drop_rate,
attn_drop=attn_drop_rate,
drop_path=dpr[i],
norm_layer=norm_layer,
init_values=init_values,
window_size=self.patch_embed.patch_shape if use_rel_pos_bias else None,
)
for i in range(self_depth)
]
)
self.cross_blocks = nn.ModuleList(
[
CrossBlock(
dim=embed_dim,
num_heads=num_heads,
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
drop=drop_rate,
attn_drop=attn_drop_rate,
drop_path=dpr[i + self_depth],
norm_layer=norm_layer,
init_values=init_values,
window_size=self.patch_embed.patch_shape if use_rel_pos_bias else None,
)
for i in range(cross_depth)
]
)
# trunc_normal_(self.mask_token, std=.02)
if patch_size == 16:
self.fpn1 = nn.Sequential(
nn.ConvTranspose2d(embed_dim, embed_dim, kernel_size=2, stride=2),
# nn.SyncBatchNorm(embed_dim),
nn.BatchNorm2d(embed_dim),
nn.GELU(),
nn.ConvTranspose2d(embed_dim, embed_dim, kernel_size=2, stride=2),
)
self.fpn2 = nn.Sequential(
nn.ConvTranspose2d(embed_dim, embed_dim, kernel_size=2, stride=2),
)
self.fpn3 = nn.Identity()
self.fpn4 = nn.MaxPool2d(kernel_size=2, stride=2)
self.grid_fpn1 = nn.Sequential(
nn.ConvTranspose2d(embed_dim, embed_dim, kernel_size=2, stride=2),
# nn.SyncBatchNorm(embed_dim),
nn.BatchNorm2d(embed_dim),
nn.GELU(),
nn.ConvTranspose2d(embed_dim, embed_dim, kernel_size=2, stride=2),
)
self.grid_fpn2 = nn.Sequential(
nn.ConvTranspose2d(embed_dim, embed_dim, kernel_size=2, stride=2),
)
self.grid_fpn3 = nn.Identity()
self.grid_fpn4 = nn.MaxPool2d(kernel_size=2, stride=2)
elif patch_size == 8:
self.fpn1 = nn.Sequential(
nn.ConvTranspose2d(embed_dim, embed_dim, kernel_size=2, stride=2),
)
self.fpn2 = nn.Identity()
self.fpn3 = nn.Sequential(
nn.MaxPool2d(kernel_size=2, stride=2),
)
self.fpn4 = nn.Sequential(
nn.MaxPool2d(kernel_size=4, stride=4),
)
self.grid_fpn1 = nn.Sequential(
nn.ConvTranspose2d(embed_dim, embed_dim, kernel_size=2, stride=2),
)
self.grid_fpn2 = nn.Identity()
self.grid_fpn3 = nn.Sequential(
nn.MaxPool2d(kernel_size=2, stride=2),
)
self.grid_fpn4 = nn.Sequential(
nn.MaxPool2d(kernel_size=4, stride=4),
)
if self.pos_embed is not None:
trunc_normal_(self.pos_embed, std=0.02)
trunc_normal_(self.grid_pos_embed, std=0.02)
trunc_normal_(self.cls_token, std=0.02)
trunc_normal_(self.grid_token, std=0.02)
self.apply(self._init_weights)
self.fix_init_weight()
def fix_init_weight(self):
def rescale(param, layer_id):
param.div_(math.sqrt(2.0 * layer_id))
for layer_id, layer in enumerate(self.blocks):
rescale(layer.attn.proj.weight.data, layer_id + 1)
rescale(layer.mlp.fc2.weight.data, layer_id + 1)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=0.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
'''
def init_weights(self):
"""Initialize the weights in backbone.
Args:
pretrained (str, optional): Path to pre-trained weights.
Defaults to None.
"""
logger = get_root_logger()
if self.pos_embed is not None:
trunc_normal_(self.pos_embed, std=.02)
trunc_normal_(self.cls_token, std=.02)
self.apply(self._init_weights)
self.fix_init_weight()
if self.init_cfg is None:
logger.warn(f'No pre-trained weights for '
f'{self.__class__.__name__}, '
f'training start from scratch')
else:
assert 'checkpoint' in self.init_cfg, f'Only support ' \
f'specify `Pretrained` in ' \
f'`init_cfg` in ' \
f'{self.__class__.__name__} '
logger.info(f"Will load ckpt from {self.init_cfg['checkpoint']}")
load_checkpoint(self,
filename=self.init_cfg['checkpoint'],
strict=False,
logger=logger,
beit_spec_expand_rel_pos = self.use_rel_pos_bias,
)
'''
def get_num_layers(self):
return len(self.blocks)
@torch.jit.ignore
def no_weight_decay(self):
return {"pos_embed", "cls_token"}
def forward_features(self, x, grid):
B, C, H, W = x.shape
vis_x, (Hp, Wp) = self.patch_embed(x, self.pos_embed[:, 1:, :] if self.pos_embed is not None else None)
grid_x, (grid_Hp, grid_Wp) = self.grid_patch_embed(
grid, self.grid_pos_embed[:, 1:, :] if self.grid_pos_embed is not None else None
)
# Hp, Wp are HW for patches
batch_size, seq_len, _ = grid_x.size()
cls_tokens = self.cls_token.expand(batch_size, -1, -1) # stole cls_tokens impl from Phil Wang, thanks
grid_tokens = self.grid_token.expand(batch_size, -1, -1) # stole cls_tokens impl from Phil Wang, thanks
if self.pos_embed is not None:
cls_tokens = cls_tokens + self.pos_embed[:, :1, :]
grid_tokens = grid_tokens + self.grid_pos_embed[:, :1, :]
vis_x = torch.cat((cls_tokens, vis_x), dim=1)
vis_x = self.pos_drop(vis_x)
grid_x = torch.cat((grid_tokens, grid_x), dim=1)
grid_x = self.pos_drop(grid_x)
features = []
grid_features = []
training_window_size = torch.tensor([Hp, Wp])
grid_training_window_size = torch.tensor([grid_Hp, grid_Wp])
rel_pos_bias = self.rel_pos_bias(training_window_size) if self.rel_pos_bias is not None else None
for i, blk in enumerate(self.blocks):
if self.use_checkpoint:
vis_x = checkpoint.checkpoint(blk, vis_x, rel_pos_bias, training_window_size)
else:
vis_x = blk(vis_x, rel_pos_bias=rel_pos_bias, training_window_size=training_window_size)
if i in self.out_indices:
xp = vis_x[:, 1:, :].permute(0, 2, 1).reshape(B, -1, Hp, Wp)
features.append(xp.contiguous())
for i, grid_blk in enumerate(self.grid_blocks):
if self.use_checkpoint:
grid_x = checkpoint.checkpoint(grid_blk, grid_x, rel_pos_bias, grid_training_window_size)
else:
grid_x = grid_blk(grid_x, rel_pos_bias=rel_pos_bias, training_window_size=grid_training_window_size)
if i in self.out_indices:
gp = grid_x[:, 1:, :].permute(0, 2, 1).reshape(B, -1, grid_Hp, grid_Wp)
grid_features.append(gp.contiguous())
# import ipdb;ipdb.set_trace()
for i, cross_blk in enumerate(self.cross_blocks):
if self.use_checkpoint:
vis_x, grid_x = checkpoint.checkpoint(cross_blk, vis_x, grid_x)
else:
vis_x, grid_x = cross_blk(vis_input=vis_x, grid_input=grid_x)
if 1:
xp = vis_x[:, 1:, :].permute(0, 2, 1).reshape(B, -1, Hp, Wp)
features.append(xp.contiguous())
gp = grid_x[:, 1:, :].permute(0, 2, 1).reshape(B, -1, grid_Hp, grid_Wp)
grid_features.append(gp.contiguous())
ops = [self.fpn1, self.fpn2, self.fpn3, self.fpn4]
grid_ops = [self.grid_fpn1, self.grid_fpn2, self.grid_fpn3, self.grid_fpn4]
for i in range(len(features)):
features[i] = ops[i](features[i])
for i in range(len(grid_features)):
grid_features[i] = grid_ops[i](grid_features[i])
feat_out = {}
grid_feat_out = {}
for name, vis_value, grid_value in zip(self.out_features, features, grid_features):
feat_out[name] = vis_value
grid_feat_out[name] = grid_value
return feat_out, grid_feat_out
def forward(self, x, grid):
x, y = self.forward_features(x, grid)
return x, y
def beit_base_patch16(pretrained=False, **kwargs):
model = BEiT(
patch_size=16,
embed_dim=768,
depth=12,
num_heads=12,
mlp_ratio=4,
qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6),
init_values=None,
**kwargs,
)
model.default_cfg = _cfg()
return model
def beit_large_patch16(pretrained=False, **kwargs):
model = BEiT(
patch_size=16,
embed_dim=1024,
depth=24,
num_heads=16,
mlp_ratio=4,
qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6),
init_values=None,
**kwargs,
)
model.default_cfg = _cfg()
return model
def VGT_dit_base_patch16(pretrained=False, **kwargs):
model = BEiT(
patch_size=16,
embed_dim=768,
self_depth=12,
cross_depth=0,
num_heads=12,
mlp_ratio=4,
qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6),
init_values=0.1,
in_chans=3,
grid_chans=64,
**kwargs,
)
model.default_cfg = _cfg()
return model
def dit_base_patch16(pretrained=False, **kwargs):
model = BEiT(
patch_size=16,
embed_dim=768,
depth=12,
num_heads=12,
mlp_ratio=4,
qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6),
init_values=0.1,
in_chans=3,
**kwargs,
)
model.default_cfg = _cfg()
return model
def dit_large_patch16(pretrained=False, **kwargs):
model = BEiT(
patch_size=16,
embed_dim=1024,
depth=24,
num_heads=16,
mlp_ratio=4,
qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6),
init_values=1e-5,
**kwargs,
)
model.default_cfg = _cfg()
return model
if __name__ == "__main__":
model = BEiT(use_checkpoint=True, use_shared_rel_pos_bias=True)
model = model.to("cuda:0")
input1 = torch.rand(2, 3, 512, 762).to("cuda:0")
input2 = torch.rand(2, 3, 800, 1200).to("cuda:0")
input3 = torch.rand(2, 3, 720, 1000).to("cuda:0")
output1 = model(input1)
output2 = model(input2)
output3 = model(input3)
print("all done")
|