File size: 7,171 Bytes
2e237ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
# from https://github.com/facebookresearch/detr/blob/main/d2/detr/dataset_mapper.py


import copy
import logging
from os import path

import numpy as np
import torch

from detectron2.data import detection_utils as utils
from detectron2.data import transforms as T

import json
import pickle

from detectron2.structures import (
    BitMasks,
    Boxes,
    BoxMode,
    Instances,
    Keypoints,
    PolygonMasks,
    RotatedBoxes,
    polygons_to_bitmask,
)

__all__ = ["DetrDatasetMapper"]


def build_transform_gen(cfg, is_train):
    """
    Create a list of :class:`TransformGen` from config.
    Returns:
        list[TransformGen]
    """
    if is_train:
        min_size = cfg.INPUT.MIN_SIZE_TRAIN
        max_size = cfg.INPUT.MAX_SIZE_TRAIN
        sample_style = cfg.INPUT.MIN_SIZE_TRAIN_SAMPLING
    else:
        min_size = cfg.INPUT.MIN_SIZE_TEST
        max_size = cfg.INPUT.MAX_SIZE_TEST
        sample_style = "choice"
    if sample_style == "range":
        assert len(min_size) == 2, "more than 2 ({}) min_size(s) are provided for ranges".format(len(min_size))

    logger = logging.getLogger(__name__)
    tfm_gens = []
    # if is_train:
    #     tfm_gens.append(T.RandomFlip())
    tfm_gens.append(T.ResizeShortestEdge(min_size, max_size, sample_style))
    if is_train:
        logger.info("TransformGens used in training: " + str(tfm_gens))
    return tfm_gens


def build_transform_gen_w(cfg, is_train):
    """
    Create a list of :class:`TransformGen` from config.
    Returns:
        list[TransformGen]
    """
    if is_train:
        min_size = cfg.INPUT.MIN_SIZE_TRAIN
        max_size = 800
        sample_style = cfg.INPUT.MIN_SIZE_TRAIN_SAMPLING
    else:
        min_size = cfg.INPUT.MIN_SIZE_TEST
        max_size = cfg.INPUT.MAX_SIZE_TEST
        sample_style = "choice"
    if sample_style == "range":
        assert len(min_size) == 2, "more than 2 ({}) min_size(s) are provided for ranges".format(len(min_size))

    logger = logging.getLogger(__name__)
    tfm_gens = []
    # if is_train:
    #     tfm_gens.append(T.RandomFlip())
    tfm_gens.append(T.ResizeShortestEdge(min_size, max_size, sample_style))
    if is_train:
        logger.info("TransformGens used in training: " + str(tfm_gens))
    return tfm_gens


class DetrDatasetMapper:
    """
    A callable which takes a dataset dict in Detectron2 Dataset format,
    and map it into a format used by DETR.

    The callable currently does the following:

    1. Read the image from "file_name"
    2. Applies geometric transforms to the image and annotation
    3. Find and applies suitable cropping to the image and annotation
    4. Prepare image and annotation to Tensors
    """

    def __init__(self, cfg, is_train=True):
        if cfg.INPUT.CROP.ENABLED and is_train:
            self.crop_gen = [
                T.ResizeShortestEdge([400, 500, 600], sample_style="choice"),
                T.RandomCrop(cfg.INPUT.CROP.TYPE, cfg.INPUT.CROP.SIZE),
            ]
        else:
            self.crop_gen = None

        self.mask_on = cfg.MODEL.MASK_ON
        self.tfm_gens = build_transform_gen(cfg, is_train)
        self.tfm_gens_w = build_transform_gen_w(cfg, is_train)
        logging.getLogger(__name__).info(
            "Full TransformGens used in training: {}, crop: {}".format(str(self.tfm_gens), str(self.crop_gen))
        )

        self.img_format = cfg.INPUT.FORMAT
        self.is_train = is_train
        self.cfg = cfg

        logger = logging.getLogger("detectron2")

    def __call__(self, dataset_dict):
        """
        Args:
            dataset_dict (dict): Metadata of one image, in Detectron2 Dataset format.

        Returns:
            dict: a format that builtin models in detectron2 accept
        """
        dataset_dict = copy.deepcopy(dataset_dict)  # it will be modified by code below
        image = utils.read_image(dataset_dict["file_name"], format=self.img_format)
        utils.check_image_size(dataset_dict, image)

        word_grid_path = dataset_dict["file_name"].replace("images", "word_grids").replace(".jpg", ".pkl")
        if path.exists(word_grid_path):
            with open(word_grid_path, "rb") as f:
                sample_inputs = pickle.load(f)
            input_ids = sample_inputs["input_ids"]
            bbox_subword_list = sample_inputs["bbox_subword_list"]
        else:
            input_ids = []
            bbox_subword_list = []
            print(f"No word grid pkl in: {word_grid_path}")

        image_shape_ori = image.shape[:2]  # h, w

        if self.crop_gen is None:
            if image_shape_ori[0] > image_shape_ori[1]:
                image, transforms = T.apply_transform_gens(self.tfm_gens, image)
            else:
                image, transforms = T.apply_transform_gens(self.tfm_gens_w, image)
        else:
            if np.random.rand() > 0.5:
                if image_shape_ori[0] > image_shape_ori[1]:
                    image, transforms = T.apply_transform_gens(self.tfm_gens, image)
                else:
                    image, transforms = T.apply_transform_gens(self.tfm_gens_w, image)
            else:
                image, transforms = T.apply_transform_gens(
                    self.tfm_gens_w[:-1] + self.crop_gen + self.tfm_gens_w[-1:], image
                )

        image_shape = image.shape[:2]  # h, w

        # Pytorch's dataloader is efficient on torch.Tensor due to shared-memory,
        # but not efficient on large generic data structures due to the use of pickle & mp.Queue.
        # Therefore it's important to use torch.Tensor.
        dataset_dict["image"] = torch.as_tensor(np.ascontiguousarray(image.transpose(2, 0, 1)))

        ## 产出 text grid
        bbox = []
        for bbox_per_subword in bbox_subword_list:
            text_word = {}
            text_word["bbox"] = bbox_per_subword.tolist()
            text_word["bbox_mode"] = BoxMode.XYWH_ABS
            utils.transform_instance_annotations(text_word, transforms, image_shape)
            bbox.append(text_word["bbox"])

        dataset_dict["input_ids"] = input_ids
        dataset_dict["bbox"] = bbox

        if not self.is_train:
            # USER: Modify this if you want to keep them for some reason.
            dataset_dict.pop("annotations", None)
            return dataset_dict

        if "annotations" in dataset_dict:
            # USER: Modify this if you want to keep them for some reason.
            for anno in dataset_dict["annotations"]:
                if not self.mask_on:
                    anno.pop("segmentation", None)
                anno.pop("keypoints", None)

            # USER: Implement additional transformations if you have other types of data
            annos = [
                utils.transform_instance_annotations(obj, transforms, image_shape)
                for obj in dataset_dict.pop("annotations")
                if obj.get("iscrowd", 0) == 0
            ]
            instances = utils.annotations_to_instances(annos, image_shape)
            dataset_dict["instances"] = utils.filter_empty_instances(instances)

        return dataset_dict