Spaces:
Running
Running
# coding=utf-8 | |
# Copyright 2022-present NAVER Corp, The Microsoft Research Asia LayoutLM Team Authors and the HuggingFace Inc. team.. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" BROS model configuration """ | |
from transformers.configuration_utils import PretrainedConfig | |
from transformers.utils import logging | |
logger = logging.get_logger(__name__) | |
BROS_PRETRAINED_CONFIG_ARCHIVE_MAP = { | |
"bros-base-uncased": "https://huggingface.co/naver-clova-ocr/bros-base-uncased/resolve/main/config.json", | |
"bros-large-uncased": "https://huggingface.co/naver-clova-ocr/bros-large-uncased/resolve/main/config.json", | |
} | |
class BrosConfig(PretrainedConfig): | |
r""" | |
This is the configuration class to store the configuration of a :class:`~transformers.BertModel` or a | |
:class:`~transformers.TFBertModel`. It is used to instantiate a BERT model according to the specified arguments, | |
defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration | |
to that of the BERT `bert-base-uncased <https://huggingface.co/bert-base-uncased>`__ architecture. | |
Configuration objects inherit from :class:`~transformers.PretrainedConfig` and can be used to control the model | |
outputs. Read the documentation from :class:`~transformers.PretrainedConfig` for more information. | |
Args: | |
vocab_size (:obj:`int`, `optional`, defaults to 30522): | |
Vocabulary size of the BERT model. Defines the number of different tokens that can be represented by the | |
:obj:`inputs_ids` passed when calling :class:`~transformers.BertModel` or | |
:class:`~transformers.TFBertModel`. | |
hidden_size (:obj:`int`, `optional`, defaults to 768): | |
Dimensionality of the encoder layers and the pooler layer. | |
num_hidden_layers (:obj:`int`, `optional`, defaults to 12): | |
Number of hidden layers in the Transformer encoder. | |
num_attention_heads (:obj:`int`, `optional`, defaults to 12): | |
Number of attention heads for each attention layer in the Transformer encoder. | |
intermediate_size (:obj:`int`, `optional`, defaults to 3072): | |
Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder. | |
hidden_act (:obj:`str` or :obj:`Callable`, `optional`, defaults to :obj:`"gelu"`): | |
The non-linear activation function (function or string) in the encoder and pooler. If string, | |
:obj:`"gelu"`, :obj:`"relu"`, :obj:`"silu"` and :obj:`"gelu_new"` are supported. | |
hidden_dropout_prob (:obj:`float`, `optional`, defaults to 0.1): | |
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. | |
attention_probs_dropout_prob (:obj:`float`, `optional`, defaults to 0.1): | |
The dropout ratio for the attention probabilities. | |
max_position_embeddings (:obj:`int`, `optional`, defaults to 512): | |
The maximum sequence length that this model might ever be used with. Typically set this to something large | |
just in case (e.g., 512 or 1024 or 2048). | |
type_vocab_size (:obj:`int`, `optional`, defaults to 2): | |
The vocabulary size of the :obj:`token_type_ids` passed when calling :class:`~transformers.BertModel` or | |
:class:`~transformers.TFBertModel`. | |
initializer_range (:obj:`float`, `optional`, defaults to 0.02): | |
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. | |
layer_norm_eps (:obj:`float`, `optional`, defaults to 1e-12): | |
The epsilon used by the layer normalization layers. | |
gradient_checkpointing (:obj:`bool`, `optional`, defaults to :obj:`False`): | |
If True, use gradient checkpointing to save memory at the expense of slower backward pass. | |
position_embedding_type (:obj:`str`, `optional`, defaults to :obj:`"absolute"`): | |
Type of position embedding. Choose one of :obj:`"absolute"`, :obj:`"relative_key"`, | |
:obj:`"relative_key_query"`. For positional embeddings use :obj:`"absolute"`. For more information on | |
:obj:`"relative_key"`, please refer to `Self-Attention with Relative Position Representations (Shaw et al.) | |
<https://arxiv.org/abs/1803.02155>`__. For more information on :obj:`"relative_key_query"`, please refer to | |
`Method 4` in `Improve Transformer Models with Better Relative Position Embeddings (Huang et al.) | |
<https://arxiv.org/abs/2009.13658>`__. | |
use_cache (:obj:`bool`, `optional`, defaults to :obj:`True`): | |
Whether or not the model should return the last key/values attentions (not used by all models). Only | |
relevant if ``config.is_decoder=True``. | |
classifier_dropout (:obj:`float`, `optional`): | |
The dropout ratio for the classification head. | |
Examples:: | |
>>> from adapters.ml.vgt.bros import BrosModel, BrosConfig | |
>>> # Initializing a BROS naver-clova-ocr/bros-base-uncased style configuration | |
>>> configuration = BrosConfig() | |
>>> # Initializing a model from the naver-clova-ocr/bros-base-uncased style configuration | |
>>> model = BrosModel(configuration) | |
>>> # Accessing the model configuration | |
>>> configuration = model.config | |
""" | |
model_type = "bros" | |
def __init__( | |
self, | |
vocab_size=30522, | |
hidden_size=768, | |
num_hidden_layers=12, | |
num_attention_heads=12, | |
intermediate_size=3072, | |
hidden_act="gelu", | |
hidden_dropout_prob=0.1, | |
attention_probs_dropout_prob=0.1, | |
max_position_embeddings=512, | |
type_vocab_size=2, | |
initializer_range=0.02, | |
layer_norm_eps=1e-12, | |
pad_token_id=0, | |
bbox_scale=100.0, | |
pe_type="crel", | |
**kwargs, | |
): | |
super().__init__( | |
vocab_size=vocab_size, | |
hidden_size=hidden_size, | |
num_hidden_layers=num_hidden_layers, | |
num_attention_heads=num_attention_heads, | |
intermediate_size=intermediate_size, | |
hidden_act=hidden_act, | |
hidden_dropout_prob=hidden_dropout_prob, | |
attention_probs_dropout_prob=attention_probs_dropout_prob, | |
max_position_embeddings=max_position_embeddings, | |
type_vocab_size=type_vocab_size, | |
initializer_range=initializer_range, | |
layer_norm_eps=layer_norm_eps, | |
pad_token_id=pad_token_id, | |
**kwargs, | |
) | |
self.bbox_scale = bbox_scale | |
self.pe_type = pe_type | |