Spaces:
Running
Running
# -------------------------------------------------------------------------------- | |
# VIT: Multi-Path Vision Transformer for Dense Prediction | |
# Copyright (c) 2022 Electronics and Telecommunications Research Institute (ETRI). | |
# All Rights Reserved. | |
# Written by Youngwan Lee | |
# This source code is licensed(Dual License(GPL3.0 & Commercial)) under the license found in the | |
# LICENSE file in the root directory of this source tree. | |
# -------------------------------------------------------------------------------- | |
# References: | |
# timm: https://github.com/rwightman/pytorch-image-models/tree/master/timm | |
# CoaT: https://github.com/mlpc-ucsd/CoaT | |
# -------------------------------------------------------------------------------- | |
import torch | |
import torch.nn.functional as F | |
import logging | |
from detectron2.layers import ( | |
ShapeSpec, | |
) | |
from detectron2.modeling import Backbone, BACKBONE_REGISTRY, FPN | |
from detectron2.modeling.backbone.fpn import LastLevelP6P7, LastLevelMaxPool | |
from .VGTbeit import beit_base_patch16, dit_base_patch16, dit_large_patch16, beit_large_patch16, VGT_dit_base_patch16 | |
from .FeatureMerge import FeatureMerge | |
__all__ = [ | |
"build_VGT_fpn_backbone", | |
] | |
class PTM_VIT_Backbone(Backbone): | |
""" | |
Implement VIT backbone. | |
""" | |
def __init__(self, name, out_features, drop_path, img_size, pos_type, merge_type, model_kwargs): | |
super().__init__() | |
self._out_features = out_features | |
if "base" in name: | |
self._out_feature_strides = {"layer3": 4, "layer5": 8, "layer7": 16, "layer11": 32} | |
else: | |
self._out_feature_strides = {"layer7": 4, "layer11": 8, "layer15": 16, "layer23": 32} | |
if name == "beit_base_patch16": | |
model_func = beit_base_patch16 | |
self._out_feature_channels = {"layer3": 768, "layer5": 768, "layer7": 768, "layer11": 768} | |
elif name == "dit_base_patch16": | |
model_func = dit_base_patch16 | |
self._out_feature_channels = {"layer3": 768, "layer5": 768, "layer7": 768, "layer11": 768} | |
elif name == "deit_base_patch16": | |
model_func = deit_base_patch16 | |
self._out_feature_channels = {"layer3": 768, "layer5": 768, "layer7": 768, "layer11": 768} | |
elif name == "VGT_dit_base_patch16": | |
model_func = VGT_dit_base_patch16 | |
self._out_feature_channels = {"layer3": 768, "layer5": 768, "layer7": 768, "layer11": 768} | |
elif name == "mae_base_patch16": | |
model_func = mae_base_patch16 | |
self._out_feature_channels = {"layer3": 768, "layer5": 768, "layer7": 768, "layer11": 768} | |
elif name == "dit_large_patch16": | |
model_func = dit_large_patch16 | |
self._out_feature_channels = {"layer7": 1024, "layer11": 1024, "layer15": 1024, "layer23": 1024} | |
elif name == "beit_large_patch16": | |
model_func = beit_large_patch16 | |
self._out_feature_channels = {"layer7": 1024, "layer11": 1024, "layer15": 1024, "layer23": 1024} | |
else: | |
raise ValueError("Unsupported VIT name yet.") | |
if "beit" in name or "dit" in name: | |
if pos_type == "abs": | |
self.backbone = model_func( | |
img_size=img_size, | |
out_features=out_features, | |
drop_path_rate=drop_path, | |
use_abs_pos_emb=True, | |
**model_kwargs, | |
) | |
elif pos_type == "shared_rel": | |
self.backbone = model_func( | |
img_size=img_size, | |
out_features=out_features, | |
drop_path_rate=drop_path, | |
use_shared_rel_pos_bias=True, | |
**model_kwargs, | |
) | |
elif pos_type == "rel": | |
self.backbone = model_func( | |
img_size=img_size, | |
out_features=out_features, | |
drop_path_rate=drop_path, | |
use_rel_pos_bias=True, | |
**model_kwargs, | |
) | |
else: | |
raise ValueError() | |
else: | |
self.backbone = model_func( | |
img_size=img_size, out_features=out_features, drop_path_rate=drop_path, **model_kwargs | |
) | |
logger = logging.getLogger("detectron2") | |
logger.info("Merge using: {}".format(merge_type)) | |
self.FeatureMerge = FeatureMerge( | |
feature_names=self._out_features, | |
visual_dim=[768, 768, 768, 768], | |
semantic_dim=[768, 768, 768, 768], | |
merge_type=merge_type, | |
) | |
def forward(self, x, grid): | |
""" | |
Args: | |
x: Tensor of shape (N,C,H,W). H, W must be a multiple of ``self.size_divisibility``. | |
Returns: | |
dict[str->Tensor]: names and the corresponding features | |
""" | |
assert x.dim() == 4, f"VIT takes an input of shape (N, C, H, W). Got {x.shape} instead!" | |
vis_feat_out, grid_feat_out = self.backbone.forward_features(x, grid) | |
return self.FeatureMerge.forward(vis_feat_out, grid_feat_out) | |
# return self.backbone.forward_features(x) | |
def output_shape(self): | |
return { | |
name: ShapeSpec(channels=self._out_feature_channels[name], stride=self._out_feature_strides[name]) | |
for name in self._out_features | |
} | |
class GridFPN(FPN): | |
def forward(self, x, grid): | |
""" | |
Args: | |
input (dict[str->Tensor]): mapping feature map name (e.g., "res5") to | |
feature map tensor for each feature level in high to low resolution order. | |
Returns: | |
dict[str->Tensor]: | |
mapping from feature map name to FPN feature map tensor | |
in high to low resolution order. Returned feature names follow the FPN | |
paper convention: "p<stage>", where stage has stride = 2 ** stage e.g., | |
["p2", "p3", ..., "p6"]. | |
""" | |
bottom_up_features = self.bottom_up(x, grid) | |
results = [] | |
prev_features = self.lateral_convs[0](bottom_up_features[self.in_features[-1]]) | |
results.append(self.output_convs[0](prev_features)) | |
# Reverse feature maps into top-down order (from low to high resolution) | |
for idx, (lateral_conv, output_conv) in enumerate(zip(self.lateral_convs, self.output_convs)): | |
# Slicing of ModuleList is not supported https://github.com/pytorch/pytorch/issues/47336 | |
# Therefore we loop over all modules but skip the first one | |
if idx > 0: | |
features = self.in_features[-idx - 1] | |
features = bottom_up_features[features] | |
top_down_features = F.interpolate(prev_features, scale_factor=2.0, mode="nearest") | |
lateral_features = lateral_conv(features) | |
prev_features = lateral_features + top_down_features | |
if self._fuse_type == "avg": | |
prev_features /= 2 | |
results.insert(0, output_conv(prev_features)) | |
if self.top_block is not None: | |
if self.top_block.in_feature in bottom_up_features: | |
top_block_in_feature = bottom_up_features[self.top_block.in_feature] | |
else: | |
top_block_in_feature = results[self._out_features.index(self.top_block.in_feature)] | |
results.extend(self.top_block(top_block_in_feature)) | |
assert len(self._out_features) == len(results) | |
return {f: res for f, res in zip(self._out_features, results)} | |
def build_PTM_VIT_Backbone(cfg): | |
""" | |
Create a VIT instance from config. | |
Args: | |
cfg: a detectron2 CfgNode | |
Returns: | |
A VIT backbone instance. | |
""" | |
# fmt: off | |
name = cfg.MODEL.VIT.NAME | |
out_features = cfg.MODEL.VIT.OUT_FEATURES | |
drop_path = cfg.MODEL.VIT.DROP_PATH | |
img_size = cfg.MODEL.VIT.IMG_SIZE | |
pos_type = cfg.MODEL.VIT.POS_TYPE | |
merge_type = cfg.MODEL.VIT.MERGE_TYPE | |
model_kwargs = eval(str(cfg.MODEL.VIT.MODEL_KWARGS).replace("`", "")) | |
return PTM_VIT_Backbone(name, out_features, drop_path, img_size, pos_type, merge_type, model_kwargs) | |
def build_VGT_fpn_backbone(cfg, input_shape: ShapeSpec): | |
""" | |
Create a VIT w/ FPN backbone. | |
Args: | |
cfg: a detectron2 CfgNode | |
Returns: | |
backbone (Backbone): backbone module, must be a subclass of :class:`Backbone`. | |
""" | |
bottom_up = build_PTM_VIT_Backbone(cfg) | |
in_features = cfg.MODEL.FPN.IN_FEATURES | |
out_channels = cfg.MODEL.FPN.OUT_CHANNELS | |
backbone = GridFPN( | |
bottom_up=bottom_up, | |
in_features=in_features, | |
out_channels=out_channels, | |
norm=cfg.MODEL.FPN.NORM, | |
top_block=LastLevelMaxPool(), | |
fuse_type=cfg.MODEL.FPN.FUSE_TYPE, | |
) | |
return backbone | |