Spaces:
Running
Running
import torch | |
from os.path import join | |
from detectron2.config import get_cfg | |
from detectron2.engine import default_setup, default_argument_parser | |
from configuration import service_logger, SRC_PATH, ROOT_PATH | |
from adapters.ml.vgt.ditod import add_vit_config | |
def is_gpu_available(): | |
total_free_memory_in_system: float = 0.0 | |
if torch.cuda.is_available(): | |
for i in range(torch.cuda.device_count()): | |
total_memory = torch.cuda.get_device_properties(i).total_memory / 1024**2 | |
allocated_memory = torch.cuda.memory_allocated(i) / 1024**2 | |
cached_memory = torch.cuda.memory_reserved(i) / 1024**2 | |
service_logger.info(f"GPU {i}: {torch.cuda.get_device_name(i)}") | |
service_logger.info(f" Total Memory: {total_memory} MB") | |
service_logger.info(f" Allocated Memory: {allocated_memory} MB") | |
service_logger.info(f" Cached Memory: {cached_memory} MB") | |
total_free_memory_in_system += total_memory - allocated_memory - cached_memory | |
if total_free_memory_in_system < 3000: | |
service_logger.info(f"Total free GPU memory is {total_free_memory_in_system} < 3000 MB. Switching to CPU.") | |
service_logger.info("The process is probably going to be 15 times slower.") | |
else: | |
service_logger.info("No CUDA-compatible GPU detected. Switching to CPU.") | |
return total_free_memory_in_system > 3000 | |
def get_model_configuration(): | |
parser = default_argument_parser() | |
args, unknown = parser.parse_known_args() | |
args.config_file = join(SRC_PATH, "adapters", "ml", "vgt", "model_configuration", "doclaynet_VGT_cascade_PTM.yaml") | |
args.eval_only = True | |
args.num_gpus = 1 | |
args.opts = [ | |
"MODEL.WEIGHTS", | |
join(ROOT_PATH, "models", "doclaynet_VGT_model.pth"), | |
"OUTPUT_DIR", | |
join(ROOT_PATH, "model_output_doclaynet"), | |
] | |
args.debug = False | |
configuration = get_cfg() | |
add_vit_config(configuration) | |
configuration.merge_from_file(args.config_file) | |
configuration.merge_from_list(args.opts) | |
configuration.MODEL.DEVICE = "cuda" if is_gpu_available() else "cpu" | |
configuration.freeze() | |
default_setup(configuration, args) | |
return configuration | |