from pathlib import Path from adapters.ml.fast_trainer.Paragraph import Paragraph from domain.PdfSegment import PdfSegment from pdf_features import PdfToken from pdf_token_type_labels import TokenType from adapters.ml.pdf_tokens_type_trainer.TokenFeatures import TokenFeatures from adapters.ml.pdf_tokens_type_trainer.TokenTypeTrainer import TokenTypeTrainer class ParagraphExtractorTrainer(TokenTypeTrainer): def get_context_features(self, token_features: TokenFeatures, page_tokens: list[PdfToken], token_index: int): token_row_features = list() first_token_from_context = token_index - self.model_configuration.context_size for i in range(self.model_configuration.context_size * 2): first_token = page_tokens[first_token_from_context + i] second_token = page_tokens[first_token_from_context + i + 1] features = token_features.get_features(first_token, second_token, page_tokens) features += self.get_paragraph_extraction_features(first_token, second_token) token_row_features.extend(features) return token_row_features @staticmethod def get_paragraph_extraction_features(first_token: PdfToken, second_token: PdfToken) -> list[int]: one_hot_token_type_1 = [1 if token_type == first_token.token_type else 0 for token_type in TokenType] one_hot_token_type_2 = [1 if token_type == second_token.token_type else 0 for token_type in TokenType] return one_hot_token_type_1 + one_hot_token_type_2 def loop_token_next_token(self): for pdf_features in self.pdfs_features: for page in pdf_features.pages: if not page.tokens: continue if len(page.tokens) == 1: yield page, page.tokens[0], page.tokens[0] for token, next_token in zip(page.tokens, page.tokens[1:]): yield page, token, next_token def get_pdf_segments(self, paragraph_extractor_model_path: str | Path) -> list[PdfSegment]: paragraphs = self.get_paragraphs(paragraph_extractor_model_path) pdf_segments = [PdfSegment.from_pdf_tokens(paragraph.tokens, paragraph.pdf_name) for paragraph in paragraphs] return pdf_segments def get_paragraphs(self, paragraph_extractor_model_path) -> list[Paragraph]: self.predict(paragraph_extractor_model_path) paragraphs: list[Paragraph] = [] last_page = None for page, token, next_token in self.loop_token_next_token(): if last_page != page: last_page = page paragraphs.append(Paragraph([token], page.pdf_name)) if token == next_token: continue if token.prediction: paragraphs[-1].add_token(next_token) continue paragraphs.append(Paragraph([next_token], page.pdf_name)) return paragraphs