from os.path import join from domain.PdfImages import PdfImages from domain.PdfSegment import PdfSegment from ports.services.ml_model_service import MLModelService from adapters.ml.fast_trainer.ParagraphExtractorTrainer import ParagraphExtractorTrainer from adapters.ml.fast_trainer.model_configuration import MODEL_CONFIGURATION as PARAGRAPH_EXTRACTION_CONFIGURATION from adapters.ml.pdf_tokens_type_trainer.TokenTypeTrainer import TokenTypeTrainer from adapters.ml.pdf_tokens_type_trainer.ModelConfiguration import ModelConfiguration from configuration import ROOT_PATH, service_logger class FastTrainerAdapter(MLModelService): def predict_document_layout(self, pdf_images: list[PdfImages]) -> list[PdfSegment]: return self.predict_layout_fast(pdf_images) def predict_layout_fast(self, pdf_images: list[PdfImages]) -> list[PdfSegment]: service_logger.info("Creating Paragraph Tokens [fast]") pdf_images_obj = pdf_images[0] token_type_trainer = TokenTypeTrainer([pdf_images_obj.pdf_features], ModelConfiguration()) token_type_trainer.set_token_types(join(ROOT_PATH, "models", "token_type_lightgbm.model")) trainer = ParagraphExtractorTrainer( pdfs_features=[pdf_images_obj.pdf_features], model_configuration=PARAGRAPH_EXTRACTION_CONFIGURATION ) segments = trainer.get_pdf_segments(join(ROOT_PATH, "models", "paragraph_extraction_lightgbm.model")) pdf_images_obj.remove_images() return segments