#!/usr/bin/env python3 """ Fixed PDF Data Extractor - Addresses key issues in comprehensive_extract.py Key fixes: 1. Better table extraction and cleaning 2. Improved key-value pair extraction 3. More robust text processing 4. Enhanced vehicle registration extraction 5. Better date/number pattern recognition """ import json import re import pandas as pd from typing import Dict, List, Any, Optional import logging from pathlib import Path import sys from datetime import datetime try: import pdfplumber HAS_PDFPLUMBER = True except ImportError: HAS_PDFPLUMBER = False logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') logger = logging.getLogger("fixed_pdf_extractor") class FixedPDFExtractor: def __init__(self): logger.info("πŸš€ Initializing Fixed PDF Extractor") def extract_everything(self, pdf_path: str) -> Dict[str, Any]: if not HAS_PDFPLUMBER: raise RuntimeError("pdfplumber is required. Install with: pip install pdfplumber") logger.info(f"πŸ“– Processing PDF: {pdf_path}") result = { "document_info": { "filename": Path(pdf_path).name, "total_pages": 0, "extraction_timestamp": datetime.now().isoformat() }, "extracted_data": { "all_text_content": [], "all_tables": [], "key_value_pairs": {}, "audit_information": {}, "operator_information": {}, "vehicle_registrations": [], "driver_records": [], "compliance_summary": {}, "dates_and_numbers": {} } } all_text_blocks, all_tables = [], [] with pdfplumber.open(pdf_path) as pdf: result["document_info"]["total_pages"] = len(pdf.pages) for page_num, page in enumerate(pdf.pages, 1): logger.info(f"πŸ“„ Processing page {page_num}") # Extract text with better handling page_text = self._extract_page_text(page) if page_text: all_text_blocks.append({ "page": page_num, "text": page_text, "word_count": len(page_text.split()) }) # Extract tables with improved cleaning tables = self._extract_page_tables(page, page_num) all_tables.extend(tables) result["extracted_data"]["all_text_content"] = all_text_blocks result["extracted_data"]["all_tables"] = all_tables # Process extracted data with improved methods combined_text = "\n\n".join(b["text"] for b in all_text_blocks) result["extracted_data"]["key_value_pairs"] = self._extract_key_value_pairs_improved(combined_text) result["extracted_data"]["audit_information"] = self._extract_audit_info(combined_text, all_tables) result["extracted_data"]["operator_information"] = self._extract_operator_info(combined_text, all_tables) result["extracted_data"]["vehicle_registrations"] = self._extract_vehicle_registrations(all_tables) result["extracted_data"]["driver_records"] = self._extract_driver_records(all_tables) result["extracted_data"]["compliance_summary"] = self._extract_compliance_summary(combined_text, all_tables) result["extracted_data"]["dates_and_numbers"] = self._extract_dates_and_numbers_improved(combined_text) # Generate summary result["extraction_summary"] = { "text_blocks_found": len(all_text_blocks), "tables_found": len(all_tables), "key_value_pairs_found": len(result["extracted_data"]["key_value_pairs"]), "vehicle_registrations_found": len(result["extracted_data"]["vehicle_registrations"]), "driver_records_found": len(result["extracted_data"]["driver_records"]), "total_characters": len(combined_text), "processing_timestamp": datetime.now().isoformat() } logger.info("βœ… Extraction completed!") return result def _extract_page_text(self, page) -> Optional[str]: """Extract text from page with better handling""" try: text = page.extract_text() if text: # Clean up text text = re.sub(r'[ \t]+', ' ', text.strip()) text = re.sub(r'\n\s*\n', '\n', text) return text except Exception as e: logger.warning(f"Failed to extract text from page: {e}") return None def _extract_page_tables(self, page, page_num: int) -> List[Dict]: """Extract tables with improved processing""" tables = [] try: raw_tables = page.extract_tables() if raw_tables: for table_idx, table in enumerate(raw_tables): cleaned_table = self._clean_table_improved(table) if cleaned_table and len(cleaned_table) > 0: tables.append({ "page": page_num, "table_index": table_idx + 1, "headers": cleaned_table[0] if cleaned_table else [], "data": cleaned_table[1:] if len(cleaned_table) > 1 else [], "raw_data": cleaned_table, "row_count": len(cleaned_table) - 1 if len(cleaned_table) > 1 else 0, "column_count": len(cleaned_table[0]) if cleaned_table else 0 }) except Exception as e: logger.warning(f"Failed to extract tables from page {page_num}: {e}") return tables def _clean_table_improved(self, table: List[List]) -> List[List[str]]: """Improved table cleaning with better cell processing""" if not table: return [] cleaned = [] for row in table: cleaned_row = [] for cell in row: if cell is None: cleaned_cell = "" else: cleaned_cell = str(cell).strip() cleaned_cell = re.sub(r'\s+', ' ', cleaned_cell) cleaned_cell = re.sub(r'[\x00-\x1f\x7f-\x9f]', '', cleaned_cell) cleaned_row.append(cleaned_cell) if any(cell.strip() for cell in cleaned_row): cleaned.append(cleaned_row) # Optional: collapse single-column tables of empty strings if cleaned and all(len(r) == len(cleaned[0]) for r in cleaned): return cleaned return cleaned def _extract_key_value_pairs_improved(self, text: str) -> Dict[str, str]: """Improved key-value pair extraction with better cleaning""" pairs: Dict[str, str] = {} # Normalize text a bit for regex stability t = text.replace('\r', '\n') # Pattern 1: colon-separated pairs (key: value) pattern1 = re.compile( r'([A-Za-z][\w\s()/\-.]{2,80}?):\s*([^\n\r:][^\n\r]*)' ) for key, val in pattern1.findall(t): k = key.strip() v = val.strip() # Filter junk: very long values, pure separators, or obvious headers if not v or len(v) > 200: continue if re.fullmatch(r'[-_/\.]+', v): continue # Avoid capturing the next key as value by trimming trailing key-like tokens v = re.sub(r'\s+[A-Z][\w\s()/\-.]{2,40}:$', '', v).strip() # Skip values that are just long digit runs (likely id lists without meaning) if re.fullmatch(r'\d{6,}', v): continue pairs[k] = v # Pattern 2: inline β€œKey – Value” or β€œKey β€” Value” pattern2 = re.compile(r'([A-Za-z][\w\s()/\-.]{2,80}?)\s*[–—-]\s*([^\n\r]+)') for key, val in pattern2.findall(t): k = key.strip() v = val.strip() if v and len(v) <= 200 and not re.fullmatch(r'\d{6,}', v): pairs.setdefault(k, v) return pairs def _extract_audit_info(self, text: str, tables: List[Dict]) -> Dict[str, Any]: """Extract audit-specific information with better filtering""" audit_info: Dict[str, Any] = {} # Prefer tables for table in tables: headers = [str(h).lower() for h in table.get("headers", [])] joined = ' '.join(headers) if "audit information" in joined or "auditinformation" in joined: data = table.get("data", []) for row in data: if len(row) >= 2 and row[0] and row[1]: key = str(row[0]).strip() value = str(row[1]).strip() # Skip numbered list rows (e.g., "1.", "2)") if re.match(r'^\s*\d+\s*[.)]\s*$', key): continue if key and value: audit_info[key] = value # Backup from text candidates = { "Date of Audit": r'Date\s+of\s+Audit[:\s]*([^\n\r]+)', "Location of audit": r'Location\s+of\s+audit[:\s]*([^\n\r]+)', "Auditor name": r'Auditor\s+name[:\s]*([^\n\r]+)', "Audit Matrix Identifier (Name or Number)": r'Audit\s+Matrix\s+Identifier.*?[:\s]*([^\n\r]+)', } for k, pat in candidates.items(): if k not in audit_info: m = re.search(pat, text, re.IGNORECASE) if m: audit_info[k] = m.group(1).strip() return audit_info def _extract_operator_info(self, text: str, tables: List[Dict]) -> Dict[str, Any]: """Extract operator information with better table parsing""" operator_info: Dict[str, Any] = {} # Look for operator information in tables first for table in tables: headers = [str(h).lower() for h in table.get("headers", [])] if ("operatorinformation" in ' '.join(headers) or "operator information" in ' '.join(headers) or "operatorcontactdetails" in ' '.join(headers)): data = table.get("data", []) for row in data: if len(row) >= 2 and row[0] and row[1]: key = str(row[0]).strip() value = str(row[1]).strip() if key and value: # Clean up key names kl = key.lower() if "operator name" in kl: operator_info["operator_name"] = value elif "trading name" in kl: operator_info["trading_name"] = value elif "company number" in kl: if len(row) > 2: company_parts = [str(r).strip() for r in row[1:] if str(r).strip()] operator_info["company_number"] = "".join(company_parts) else: operator_info["company_number"] = value elif "business address" in kl: operator_info["business_address"] = value elif "postal address" in kl: operator_info["postal_address"] = value elif "email" in kl: operator_info["email"] = value elif "telephone" in kl or "phone" in kl: operator_info["phone"] = value elif "nhvas accreditation" in kl: operator_info["nhvas_accreditation"] = value elif "nhvas manual" in kl: operator_info["nhvas_manual"] = value # Extract from text patterns as backup patterns = { 'operator_name': r'Operator\s*name[:\s\(]*([^\n\r\)]+?)(?=\s*NHVAS|\s*Registered|$)', 'trading_name': r'Registered\s*trading\s*name[:\s\/]*([^\n\r]+?)(?=\s*Australian|$)', 'company_number': r'Australian\s*Company\s*Number[:\s]*([0-9\s]+?)(?=\s*NHVAS|$)', 'business_address': r'Operator\s*business\s*address[:\s]*([^\n\r]+?)(?=\s*Operator\s*Postal|$)', 'postal_address': r'Operator\s*Postal\s*address[:\s]*([^\n\r]+?)(?=\s*Email|$)', 'email': r'Email\s*address[:\s]*([^\s\n\r]+)', 'phone': r'Operator\s*Telephone\s*Number[:\s]*([^\s\n\r]+)', 'nhvas_accreditation': r'NHVAS\s*Accreditation\s*No\.[:\s\(]*([^\n\r\)]+)', } for key, pattern in patterns.items(): if key not in operator_info: # Only use text if not found in tables match = re.search(pattern, text, re.IGNORECASE) if match: value = match.group(1).strip() if value and len(value) < 200: if key == 'company_number': value = re.sub(r'\s+', '', value) operator_info[key] = value return operator_info def _extract_vehicle_registrations(self, tables: List[Dict]) -> List[Dict]: """Extract vehicle registration information from tables""" vehicles: List[Dict[str, Any]] = [] for table in tables: headers = [str(h).lower() for h in table.get("headers", [])] # Look for vehicle registration tables if any(keyword in ' '.join(headers) for keyword in ['registration', 'vehicle', 'number']): reg_col = None for i, header in enumerate(headers): if 'registration' in header and 'number' in header: reg_col = i break if reg_col is not None: data = table.get("data", []) for row in data: if len(row) > reg_col and row[reg_col]: reg_num = str(row[reg_col]).strip() # Validate registration format (letters/numbers) if re.match(r'^[A-Z]{1,3}\s*\d{1,3}\s*[A-Z]{0,3}$', reg_num): vehicle_info = {"registration_number": reg_num} # Add other columns as additional info for i, header in enumerate(table.get("headers", [])): if i < len(row) and i != reg_col: vehicle_info[str(header)] = str(row[i]).strip() vehicles.append(vehicle_info) return vehicles def _extract_driver_records(self, tables: List[Dict]) -> List[Dict]: """Extract driver records from tables""" drivers: List[Dict[str, Any]] = [] for table in tables: headers = [str(h).lower() for h in table.get("headers", [])] # Look for driver/scheduler tables if any(keyword in ' '.join(headers) for keyword in ['driver', 'scheduler', 'name']): name_col = None for i, header in enumerate(headers): if 'name' in header: name_col = i break if name_col is not None: data = table.get("data", []) for row in data: if len(row) > name_col and row[name_col]: name = str(row[name_col]).strip() # Basic name validation if re.match(r'^[A-Za-z\s]{2,}$', name) and len(name.split()) >= 2: driver_info = {"name": name} # Add other columns for i, header in enumerate(table.get("headers", [])): if i < len(row) and i != name_col: driver_info[str(header)] = str(row[i]).strip() drivers.append(driver_info) return drivers def _extract_compliance_summary(self, text: str, tables: List[Dict]) -> Dict[str, Any]: """Extract compliance information""" compliance = { "standards_compliance": {}, "compliance_codes": {}, "audit_results": [] } # Look for compliance tables for table in tables: headers = [str(h).lower() for h in table.get("headers", [])] if any(keyword in ' '.join(headers) for keyword in ['compliance', 'standard', 'requirement']): data = table.get("data", []) for row in data: if len(row) >= 2: standard = str(row[0]).strip() code = str(row[1]).strip() if standard.startswith('Std') and code in ['V', 'NC', 'SFI', 'NAP', 'NA']: compliance["standards_compliance"][standard] = code # Extract compliance codes definitions code_patterns = { 'V': r'\bV\b\s+([^\n\r]+)', 'NC': r'\bNC\b\s+([^\n\r]+)', 'SFI': r'\bSFI\b\s+([^\n\r]+)', 'NAP': r'\bNAP\b\s+([^\n\r]+)', 'NA': r'\bNA\b\s+([^\n\r]+)', } for code, pattern in code_patterns.items(): match = re.search(pattern, text, re.IGNORECASE) if match: compliance["compliance_codes"][code] = match.group(1).strip() return compliance def _extract_dates_and_numbers_improved(self, text: str) -> Dict[str, Any]: """Improved date and number extraction""" result = { "dates": [], "registration_numbers": [], "phone_numbers": [], "email_addresses": [], "reference_numbers": [] } # Date patterns date_patterns = [ r'\b(\d{1,2}(?:st|nd|rd|th)?\s+[A-Za-z]+\s+\d{4})\b', r'\b(\d{1,2}/\d{1,2}/\d{4})\b', r'\b(\d{1,2}-\d{1,2}-\d{4})\b', r'\b(\d{1,2}\.\d{1,2}\.\d{4})\b', ] for pattern in date_patterns: result["dates"].extend(re.findall(pattern, text)) # Registration numbers (Australian format-ish) reg_pattern = r'\b([A-Z]{1,3}\s*\d{1,3}\s*[A-Z]{0,3})\b' result["registration_numbers"] = list(set(re.findall(reg_pattern, text))) # Phone numbers (AU) phone_pattern = r'\b((?:\+61|0)[2-9]\s?\d{4}\s?\d{4})\b' result["phone_numbers"] = list(set(re.findall(phone_pattern, text))) # Email addresses email_pattern = r'\b([a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,})\b' result["email_addresses"] = list(set(re.findall(email_pattern, text))) # Reference numbers ref_patterns = [ (r'RF(?:S)?\s*#?\s*(\d+)', 'RFS_Certifications'), (r'NHVAS\s+Accreditation\s+No\.?\s*(\d+)', 'NHVAS_Numbers'), (r'Registration\s+Number\s*#?\s*(\d+)', 'Registration_Numbers'), ] for pattern, key in ref_patterns: matches = re.findall(pattern, text, re.IGNORECASE) if matches: result["reference_numbers"].extend([f"{key}: {m}" for m in matches]) return result @staticmethod def save_results(results: Dict[str, Any], output_path: str): """Save results to JSON file""" try: with open(output_path, 'w', encoding='utf-8') as f: json.dump(results, f, indent=2, ensure_ascii=False) logger.info(f"πŸ’Ύ Results saved to {output_path}") except Exception as e: logger.error(f"Failed to save results: {e}") @staticmethod def export_to_excel(results: Dict[str, Any], excel_path: str): """Export results to Excel with improved formatting""" try: with pd.ExcelWriter(excel_path, engine='openpyxl') as writer: # Summary sheet summary_data = [] extraction_summary = results.get("extraction_summary", {}) for key, value in extraction_summary.items(): summary_data.append({"Metric": key.replace("_", " ").title(), "Value": value}) pd.DataFrame(summary_data).to_excel(writer, sheet_name='Summary', index=False) # Key-value pairs kv_pairs = results.get("extracted_data", {}).get("key_value_pairs", {}) if kv_pairs: kv_df = pd.DataFrame(list(kv_pairs.items()), columns=['Key', 'Value']) kv_df.to_excel(writer, sheet_name='Key_Value_Pairs', index=False) # Vehicle registrations vehicles = results.get("extracted_data", {}).get("vehicle_registrations", []) if vehicles: pd.DataFrame(vehicles).to_excel(writer, sheet_name='Vehicle_Registrations', index=False) # Driver records drivers = results.get("extracted_data", {}).get("driver_records", []) if drivers: pd.DataFrame(drivers).to_excel(writer, sheet_name='Driver_Records', index=False) # Compliance summary compliance = results.get("extracted_data", {}).get("compliance_summary", {}) if compliance.get("standards_compliance"): comp_df = pd.DataFrame(list(compliance["standards_compliance"].items()), columns=['Standard', 'Compliance_Code']) comp_df.to_excel(writer, sheet_name='Compliance_Standards', index=False) logger.info(f"πŸ“Š Results exported to Excel: {excel_path}") except Exception as e: logger.error(f"Failed to export to Excel: {e}") def main(): if len(sys.argv) < 2: print("Usage: python fixed_pdf_extractor.py ") sys.exit(1) pdf_path = Path(sys.argv[1]) if not pdf_path.exists(): print(f"❌ PDF not found: {pdf_path}") sys.exit(1) print("πŸš€ Fixed PDF Data Extractor") print("=" * 50) extractor = FixedPDFExtractor() results = extractor.extract_everything(str(pdf_path)) base = pdf_path.stem output_dir = pdf_path.parent # Save outputs json_path = output_dir / f"{base}_comprehensive_data.json" excel_path = output_dir / f"{base}_fixed_extraction.xlsx" FixedPDFExtractor.save_results(results, str(json_path)) FixedPDFExtractor.export_to_excel(results, str(excel_path)) print("\nπŸ’Ύ OUTPUT FILES:") print(f" πŸ“„ JSON Data: {json_path}") print(f" πŸ“Š Excel Data: {excel_path}") print(f"\n✨ FIXED EXTRACTION COMPLETE!") if __name__ == "__main__": main()