Spaces:
Running
Running
shamik
commited on
feat: adding rest of the project files.
Browse files- .gitignore +179 -0
- .python-version +1 -0
- pyproject.toml +39 -0
- requirements.txt +656 -0
- src/insurance_assistants/__init__.py +2 -0
- src/insurance_assistants/agents.py +131 -0
- src/insurance_assistants/complex_rag.py +600 -0
- src/insurance_assistants/consts.py +33 -0
- src/insurance_assistants/py.typed +0 -0
- src/insurance_assistants/ui.py +337 -0
- uv.lock +0 -0
.gitignore
ADDED
@@ -0,0 +1,179 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Byte-compiled / optimized / DLL files
|
2 |
+
__pycache__/
|
3 |
+
*.py[cod]
|
4 |
+
*$py.class
|
5 |
+
|
6 |
+
# C extensions
|
7 |
+
*.so
|
8 |
+
|
9 |
+
# Distribution / packaging
|
10 |
+
.Python
|
11 |
+
build/
|
12 |
+
develop-eggs/
|
13 |
+
dist/
|
14 |
+
downloads/
|
15 |
+
eggs/
|
16 |
+
.eggs/
|
17 |
+
lib/
|
18 |
+
lib64/
|
19 |
+
parts/
|
20 |
+
sdist/
|
21 |
+
var/
|
22 |
+
wheels/
|
23 |
+
share/python-wheels/
|
24 |
+
*.egg-info/
|
25 |
+
.installed.cfg
|
26 |
+
*.egg
|
27 |
+
MANIFEST
|
28 |
+
|
29 |
+
# PyInstaller
|
30 |
+
# Usually these files are written by a python script from a template
|
31 |
+
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
32 |
+
*.manifest
|
33 |
+
*.spec
|
34 |
+
|
35 |
+
# Installer logs
|
36 |
+
pip-log.txt
|
37 |
+
pip-delete-this-directory.txt
|
38 |
+
|
39 |
+
# Unit test / coverage reports
|
40 |
+
htmlcov/
|
41 |
+
.tox/
|
42 |
+
.nox/
|
43 |
+
.coverage
|
44 |
+
.coverage.*
|
45 |
+
.cache
|
46 |
+
nosetests.xml
|
47 |
+
coverage.xml
|
48 |
+
*.cover
|
49 |
+
*.py,cover
|
50 |
+
.hypothesis/
|
51 |
+
.pytest_cache/
|
52 |
+
cover/
|
53 |
+
|
54 |
+
# Translations
|
55 |
+
*.mo
|
56 |
+
*.pot
|
57 |
+
|
58 |
+
# Django stuff:
|
59 |
+
*.log
|
60 |
+
local_settings.py
|
61 |
+
db.sqlite3
|
62 |
+
db.sqlite3-journal
|
63 |
+
|
64 |
+
# Flask stuff:
|
65 |
+
instance/
|
66 |
+
.webassets-cache
|
67 |
+
|
68 |
+
# Scrapy stuff:
|
69 |
+
.scrapy
|
70 |
+
|
71 |
+
# Sphinx documentation
|
72 |
+
docs/_build/
|
73 |
+
|
74 |
+
# PyBuilder
|
75 |
+
.pybuilder/
|
76 |
+
target/
|
77 |
+
|
78 |
+
# Jupyter Notebook
|
79 |
+
.ipynb_checkpoints
|
80 |
+
|
81 |
+
# IPython
|
82 |
+
profile_default/
|
83 |
+
ipython_config.py
|
84 |
+
|
85 |
+
# pyenv
|
86 |
+
# For a library or package, you might want to ignore these files since the code is
|
87 |
+
# intended to run in multiple environments; otherwise, check them in:
|
88 |
+
# .python-version
|
89 |
+
|
90 |
+
# pipenv
|
91 |
+
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
92 |
+
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
93 |
+
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
94 |
+
# install all needed dependencies.
|
95 |
+
#Pipfile.lock
|
96 |
+
|
97 |
+
# UV
|
98 |
+
# Similar to Pipfile.lock, it is generally recommended to include uv.lock in version control.
|
99 |
+
# This is especially recommended for binary packages to ensure reproducibility, and is more
|
100 |
+
# commonly ignored for libraries.
|
101 |
+
#uv.lock
|
102 |
+
|
103 |
+
# poetry
|
104 |
+
# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
|
105 |
+
# This is especially recommended for binary packages to ensure reproducibility, and is more
|
106 |
+
# commonly ignored for libraries.
|
107 |
+
# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
|
108 |
+
#poetry.lock
|
109 |
+
|
110 |
+
# pdm
|
111 |
+
# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
|
112 |
+
#pdm.lock
|
113 |
+
# pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
|
114 |
+
# in version control.
|
115 |
+
# https://pdm.fming.dev/latest/usage/project/#working-with-version-control
|
116 |
+
.pdm.toml
|
117 |
+
.pdm-python
|
118 |
+
.pdm-build/
|
119 |
+
|
120 |
+
# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
|
121 |
+
__pypackages__/
|
122 |
+
|
123 |
+
# Celery stuff
|
124 |
+
celerybeat-schedule
|
125 |
+
celerybeat.pid
|
126 |
+
|
127 |
+
# SageMath parsed files
|
128 |
+
*.sage.py
|
129 |
+
|
130 |
+
# Environments
|
131 |
+
.env
|
132 |
+
.venv
|
133 |
+
env/
|
134 |
+
venv/
|
135 |
+
ENV/
|
136 |
+
env.bak/
|
137 |
+
venv.bak/
|
138 |
+
|
139 |
+
# Spyder project settings
|
140 |
+
.spyderproject
|
141 |
+
.spyproject
|
142 |
+
|
143 |
+
# Rope project settings
|
144 |
+
.ropeproject
|
145 |
+
|
146 |
+
# mkdocs documentation
|
147 |
+
/site
|
148 |
+
|
149 |
+
# mypy
|
150 |
+
.mypy_cache/
|
151 |
+
.dmypy.json
|
152 |
+
dmypy.json
|
153 |
+
|
154 |
+
# Pyre type checker
|
155 |
+
.pyre/
|
156 |
+
|
157 |
+
# pytype static type analyzer
|
158 |
+
.pytype/
|
159 |
+
|
160 |
+
# Cython debug symbols
|
161 |
+
cython_debug/
|
162 |
+
|
163 |
+
# PyCharm
|
164 |
+
# JetBrains specific template is maintained in a separate JetBrains.gitignore that can
|
165 |
+
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
|
166 |
+
# and can be added to the global gitignore or merged into this file. For a more nuclear
|
167 |
+
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
|
168 |
+
#.idea/
|
169 |
+
|
170 |
+
# Ruff stuff:
|
171 |
+
.ruff_cache/
|
172 |
+
|
173 |
+
# PyPI configuration file
|
174 |
+
.pypirc
|
175 |
+
|
176 |
+
pages*/
|
177 |
+
*milvus*
|
178 |
+
|
179 |
+
.gradio
|
.python-version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
3.12
|
pyproject.toml
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[project]
|
2 |
+
name = "insurance-assistants"
|
3 |
+
version = "0.1.0"
|
4 |
+
description = "Add your description here"
|
5 |
+
readme = "README.md"
|
6 |
+
authors = [
|
7 |
+
{ name = "shamik", email = "39588365+Shamik-07@users.noreply.github.com" }
|
8 |
+
]
|
9 |
+
requires-python = ">=3.12"
|
10 |
+
dependencies = [
|
11 |
+
"beautifulsoup4>=4.13.4",
|
12 |
+
"colpali-engine>=0.3.10",
|
13 |
+
"crawlee[all]>=0.6.9",
|
14 |
+
"duckduckgo-search>=8.0.2",
|
15 |
+
"gradio-pdf>=0.0.22",
|
16 |
+
"huggingface-hub[hf-xet]>=0.32.0",
|
17 |
+
"llama-index>=0.12.37",
|
18 |
+
"llama-index-llms-huggingface-api>=0.4.3",
|
19 |
+
"llama-index-tools-playwright>=0.2.0",
|
20 |
+
"markdownify>=1.1.0",
|
21 |
+
"pdf2image>=1.17.0",
|
22 |
+
"pydantic>=2.11.5",
|
23 |
+
"pymilvus>=2.5.10",
|
24 |
+
"pyprojroot>=0.3.0",
|
25 |
+
"python-dotenv>=1.1.0",
|
26 |
+
"qwen-vl-utils>=0.0.11",
|
27 |
+
"requests>=2.32.3",
|
28 |
+
"smolagents[gradio]>=1.16.1",
|
29 |
+
"torchvision>=0.21.0",
|
30 |
+
"wikipedia-api>=0.8.1",
|
31 |
+
]
|
32 |
+
|
33 |
+
|
34 |
+
[dependency-groups]
|
35 |
+
dev = [
|
36 |
+
"jupyter>=1.1.1",
|
37 |
+
"pyrefly>=0.16.2",
|
38 |
+
"ruff>=0.11.11",
|
39 |
+
]
|
requirements.txt
ADDED
@@ -0,0 +1,656 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# This file was autogenerated by uv via the following command:
|
2 |
+
# uv pip compile pyproject.toml -o requirements.txt
|
3 |
+
accelerate==1.7.0
|
4 |
+
# via peft
|
5 |
+
aiofiles==24.1.0
|
6 |
+
# via gradio
|
7 |
+
aiohappyeyeballs==2.6.1
|
8 |
+
# via aiohttp
|
9 |
+
aiohttp==3.12.4
|
10 |
+
# via llama-index-core
|
11 |
+
aiosignal==1.3.2
|
12 |
+
# via aiohttp
|
13 |
+
aiosqlite==0.21.0
|
14 |
+
# via llama-index-core
|
15 |
+
annotated-types==0.7.0
|
16 |
+
# via pydantic
|
17 |
+
anyio==4.9.0
|
18 |
+
# via
|
19 |
+
# gradio
|
20 |
+
# httpx
|
21 |
+
# openai
|
22 |
+
# starlette
|
23 |
+
apify-fingerprint-datapoints==0.0.2
|
24 |
+
# via crawlee
|
25 |
+
arrow==1.3.0
|
26 |
+
# via cookiecutter
|
27 |
+
attrs==25.3.0
|
28 |
+
# via aiohttp
|
29 |
+
av==14.4.0
|
30 |
+
# via qwen-vl-utils
|
31 |
+
banks==2.1.2
|
32 |
+
# via llama-index-core
|
33 |
+
beautifulsoup4==4.13.4
|
34 |
+
# via
|
35 |
+
# insurance-assistants (pyproject.toml)
|
36 |
+
# crawlee
|
37 |
+
# llama-index-readers-file
|
38 |
+
# llama-index-tools-playwright
|
39 |
+
# markdownify
|
40 |
+
binaryornot==0.4.4
|
41 |
+
# via cookiecutter
|
42 |
+
blessed==1.21.0
|
43 |
+
# via inquirer
|
44 |
+
brotli==1.1.0
|
45 |
+
# via httpx
|
46 |
+
browserforge==1.2.3
|
47 |
+
# via crawlee
|
48 |
+
cachetools==6.0.0
|
49 |
+
# via crawlee
|
50 |
+
certifi==2025.1.31
|
51 |
+
# via
|
52 |
+
# crawlee
|
53 |
+
# curl-cffi
|
54 |
+
# httpcore
|
55 |
+
# httpx
|
56 |
+
# llama-cloud
|
57 |
+
# requests
|
58 |
+
cffi==1.17.1
|
59 |
+
# via curl-cffi
|
60 |
+
chardet==5.2.0
|
61 |
+
# via binaryornot
|
62 |
+
charset-normalizer==3.4.2
|
63 |
+
# via requests
|
64 |
+
click==8.2.1
|
65 |
+
# via
|
66 |
+
# browserforge
|
67 |
+
# cookiecutter
|
68 |
+
# duckduckgo-search
|
69 |
+
# llama-cloud-services
|
70 |
+
# nltk
|
71 |
+
# typer
|
72 |
+
# uvicorn
|
73 |
+
colorama==0.4.6
|
74 |
+
# via
|
75 |
+
# crawlee
|
76 |
+
# griffe
|
77 |
+
colpali-engine==0.3.10
|
78 |
+
# via insurance-assistants (pyproject.toml)
|
79 |
+
cookiecutter==2.6.0
|
80 |
+
# via crawlee
|
81 |
+
crawlee==0.6.9
|
82 |
+
# via insurance-assistants (pyproject.toml)
|
83 |
+
cssselect==1.3.0
|
84 |
+
# via parsel
|
85 |
+
curl-cffi==0.11.1
|
86 |
+
# via crawlee
|
87 |
+
dataclasses-json==0.6.7
|
88 |
+
# via llama-index-core
|
89 |
+
deprecated==1.2.18
|
90 |
+
# via
|
91 |
+
# banks
|
92 |
+
# llama-index-core
|
93 |
+
dirtyjson==1.0.8
|
94 |
+
# via llama-index-core
|
95 |
+
distro==1.9.0
|
96 |
+
# via openai
|
97 |
+
duckduckgo-search==8.0.2
|
98 |
+
# via insurance-assistants (pyproject.toml)
|
99 |
+
editor==1.6.6
|
100 |
+
# via inquirer
|
101 |
+
eval-type-backport==0.2.2
|
102 |
+
# via crawlee
|
103 |
+
fastapi==0.115.12
|
104 |
+
# via gradio
|
105 |
+
ffmpy==0.5.0
|
106 |
+
# via gradio
|
107 |
+
filelock==3.18.0
|
108 |
+
# via
|
109 |
+
# huggingface-hub
|
110 |
+
# tldextract
|
111 |
+
# torch
|
112 |
+
# transformers
|
113 |
+
filetype==1.2.0
|
114 |
+
# via llama-index-core
|
115 |
+
frozenlist==1.6.0
|
116 |
+
# via
|
117 |
+
# aiohttp
|
118 |
+
# aiosignal
|
119 |
+
fsspec==2025.5.1
|
120 |
+
# via
|
121 |
+
# gradio-client
|
122 |
+
# huggingface-hub
|
123 |
+
# llama-index-core
|
124 |
+
# torch
|
125 |
+
gradio==5.31.0
|
126 |
+
# via
|
127 |
+
# gradio-pdf
|
128 |
+
# smolagents
|
129 |
+
gradio-client==1.10.1
|
130 |
+
# via gradio
|
131 |
+
gradio-pdf==0.0.22
|
132 |
+
# via insurance-assistants (pyproject.toml)
|
133 |
+
greenlet==3.2.2
|
134 |
+
# via
|
135 |
+
# playwright
|
136 |
+
# sqlalchemy
|
137 |
+
griffe==1.7.3
|
138 |
+
# via banks
|
139 |
+
groovy==0.1.2
|
140 |
+
# via gradio
|
141 |
+
grpcio==1.67.1
|
142 |
+
# via pymilvus
|
143 |
+
h11==0.16.0
|
144 |
+
# via
|
145 |
+
# httpcore
|
146 |
+
# uvicorn
|
147 |
+
h2==4.2.0
|
148 |
+
# via httpx
|
149 |
+
hf-xet==1.1.2
|
150 |
+
# via huggingface-hub
|
151 |
+
hpack==4.1.0
|
152 |
+
# via h2
|
153 |
+
html5lib==1.1
|
154 |
+
# via crawlee
|
155 |
+
httpcore==1.0.9
|
156 |
+
# via httpx
|
157 |
+
httpx==0.28.1
|
158 |
+
# via
|
159 |
+
# crawlee
|
160 |
+
# gradio
|
161 |
+
# gradio-client
|
162 |
+
# llama-cloud
|
163 |
+
# llama-index-core
|
164 |
+
# openai
|
165 |
+
# safehttpx
|
166 |
+
huggingface-hub==0.32.3
|
167 |
+
# via
|
168 |
+
# insurance-assistants (pyproject.toml)
|
169 |
+
# accelerate
|
170 |
+
# gradio
|
171 |
+
# gradio-client
|
172 |
+
# llama-index-llms-huggingface-api
|
173 |
+
# peft
|
174 |
+
# smolagents
|
175 |
+
# tokenizers
|
176 |
+
# transformers
|
177 |
+
hyperframe==6.1.0
|
178 |
+
# via h2
|
179 |
+
idna==3.10
|
180 |
+
# via
|
181 |
+
# anyio
|
182 |
+
# httpx
|
183 |
+
# requests
|
184 |
+
# tldextract
|
185 |
+
# yarl
|
186 |
+
inquirer==3.4.0
|
187 |
+
# via crawlee
|
188 |
+
jaro-winkler==2.0.3
|
189 |
+
# via crawlee
|
190 |
+
jinja2==3.1.6
|
191 |
+
# via
|
192 |
+
# banks
|
193 |
+
# cookiecutter
|
194 |
+
# gradio
|
195 |
+
# smolagents
|
196 |
+
# torch
|
197 |
+
jiter==0.10.0
|
198 |
+
# via openai
|
199 |
+
jmespath==1.0.1
|
200 |
+
# via parsel
|
201 |
+
joblib==1.5.1
|
202 |
+
# via
|
203 |
+
# nltk
|
204 |
+
# scikit-learn
|
205 |
+
llama-cloud==0.1.23
|
206 |
+
# via
|
207 |
+
# llama-cloud-services
|
208 |
+
# llama-index-indices-managed-llama-cloud
|
209 |
+
llama-cloud-services==0.6.25
|
210 |
+
# via llama-parse
|
211 |
+
llama-index==0.12.38
|
212 |
+
# via insurance-assistants (pyproject.toml)
|
213 |
+
llama-index-agent-openai==0.4.8
|
214 |
+
# via
|
215 |
+
# llama-index
|
216 |
+
# llama-index-program-openai
|
217 |
+
llama-index-cli==0.4.1
|
218 |
+
# via llama-index
|
219 |
+
llama-index-core==0.12.38
|
220 |
+
# via
|
221 |
+
# llama-cloud-services
|
222 |
+
# llama-index
|
223 |
+
# llama-index-agent-openai
|
224 |
+
# llama-index-cli
|
225 |
+
# llama-index-embeddings-openai
|
226 |
+
# llama-index-indices-managed-llama-cloud
|
227 |
+
# llama-index-llms-huggingface-api
|
228 |
+
# llama-index-llms-openai
|
229 |
+
# llama-index-multi-modal-llms-openai
|
230 |
+
# llama-index-program-openai
|
231 |
+
# llama-index-question-gen-openai
|
232 |
+
# llama-index-readers-file
|
233 |
+
# llama-index-readers-llama-parse
|
234 |
+
# llama-index-tools-playwright
|
235 |
+
llama-index-embeddings-openai==0.3.1
|
236 |
+
# via
|
237 |
+
# llama-index
|
238 |
+
# llama-index-cli
|
239 |
+
llama-index-indices-managed-llama-cloud==0.7.1
|
240 |
+
# via llama-index
|
241 |
+
llama-index-llms-huggingface-api==0.5.0
|
242 |
+
# via insurance-assistants (pyproject.toml)
|
243 |
+
llama-index-llms-openai==0.3.44
|
244 |
+
# via
|
245 |
+
# llama-index
|
246 |
+
# llama-index-agent-openai
|
247 |
+
# llama-index-cli
|
248 |
+
# llama-index-multi-modal-llms-openai
|
249 |
+
# llama-index-program-openai
|
250 |
+
# llama-index-question-gen-openai
|
251 |
+
llama-index-multi-modal-llms-openai==0.4.3
|
252 |
+
# via llama-index
|
253 |
+
llama-index-program-openai==0.3.1
|
254 |
+
# via
|
255 |
+
# llama-index
|
256 |
+
# llama-index-question-gen-openai
|
257 |
+
llama-index-question-gen-openai==0.3.0
|
258 |
+
# via llama-index
|
259 |
+
llama-index-readers-file==0.4.8
|
260 |
+
# via llama-index
|
261 |
+
llama-index-readers-llama-parse==0.4.0
|
262 |
+
# via llama-index
|
263 |
+
llama-index-tools-playwright==0.2.0
|
264 |
+
# via insurance-assistants (pyproject.toml)
|
265 |
+
llama-parse==0.6.25
|
266 |
+
# via llama-index-readers-llama-parse
|
267 |
+
lxml==5.4.0
|
268 |
+
# via
|
269 |
+
# beautifulsoup4
|
270 |
+
# duckduckgo-search
|
271 |
+
# parsel
|
272 |
+
markdown-it-py==3.0.0
|
273 |
+
# via rich
|
274 |
+
markdownify==1.1.0
|
275 |
+
# via insurance-assistants (pyproject.toml)
|
276 |
+
markupsafe==3.0.2
|
277 |
+
# via
|
278 |
+
# gradio
|
279 |
+
# jinja2
|
280 |
+
marshmallow==3.26.1
|
281 |
+
# via dataclasses-json
|
282 |
+
mdurl==0.1.2
|
283 |
+
# via markdown-it-py
|
284 |
+
milvus-lite==2.4.12
|
285 |
+
# via pymilvus
|
286 |
+
more-itertools==10.7.0
|
287 |
+
# via crawlee
|
288 |
+
mpmath==1.3.0
|
289 |
+
# via sympy
|
290 |
+
multidict==6.4.4
|
291 |
+
# via
|
292 |
+
# aiohttp
|
293 |
+
# yarl
|
294 |
+
mypy-extensions==1.1.0
|
295 |
+
# via typing-inspect
|
296 |
+
nest-asyncio==1.6.0
|
297 |
+
# via llama-index-core
|
298 |
+
networkx==3.5
|
299 |
+
# via
|
300 |
+
# llama-index-core
|
301 |
+
# torch
|
302 |
+
nltk==3.9.1
|
303 |
+
# via
|
304 |
+
# llama-index
|
305 |
+
# llama-index-core
|
306 |
+
numpy==2.2.6
|
307 |
+
# via
|
308 |
+
# accelerate
|
309 |
+
# colpali-engine
|
310 |
+
# gradio
|
311 |
+
# llama-index-core
|
312 |
+
# pandas
|
313 |
+
# peft
|
314 |
+
# scikit-learn
|
315 |
+
# scipy
|
316 |
+
# torchvision
|
317 |
+
# transformers
|
318 |
+
nvidia-cublas-cu12==12.4.5.8
|
319 |
+
# via
|
320 |
+
# nvidia-cudnn-cu12
|
321 |
+
# nvidia-cusolver-cu12
|
322 |
+
# torch
|
323 |
+
nvidia-cuda-cupti-cu12==12.4.127
|
324 |
+
# via torch
|
325 |
+
nvidia-cuda-nvrtc-cu12==12.4.127
|
326 |
+
# via torch
|
327 |
+
nvidia-cuda-runtime-cu12==12.4.127
|
328 |
+
# via torch
|
329 |
+
nvidia-cudnn-cu12==9.1.0.70
|
330 |
+
# via torch
|
331 |
+
nvidia-cufft-cu12==11.2.1.3
|
332 |
+
# via torch
|
333 |
+
nvidia-curand-cu12==10.3.5.147
|
334 |
+
# via torch
|
335 |
+
nvidia-cusolver-cu12==11.6.1.9
|
336 |
+
# via torch
|
337 |
+
nvidia-cusparse-cu12==12.3.1.170
|
338 |
+
# via
|
339 |
+
# nvidia-cusolver-cu12
|
340 |
+
# torch
|
341 |
+
nvidia-cusparselt-cu12==0.6.2
|
342 |
+
# via torch
|
343 |
+
nvidia-nccl-cu12==2.21.5
|
344 |
+
# via torch
|
345 |
+
nvidia-nvjitlink-cu12==12.4.127
|
346 |
+
# via
|
347 |
+
# nvidia-cusolver-cu12
|
348 |
+
# nvidia-cusparse-cu12
|
349 |
+
# torch
|
350 |
+
nvidia-nvtx-cu12==12.4.127
|
351 |
+
# via torch
|
352 |
+
openai==1.82.1
|
353 |
+
# via
|
354 |
+
# llama-index-agent-openai
|
355 |
+
# llama-index-embeddings-openai
|
356 |
+
# llama-index-llms-openai
|
357 |
+
orjson==3.10.18
|
358 |
+
# via gradio
|
359 |
+
packaging==25.0
|
360 |
+
# via
|
361 |
+
# accelerate
|
362 |
+
# gradio
|
363 |
+
# gradio-client
|
364 |
+
# huggingface-hub
|
365 |
+
# marshmallow
|
366 |
+
# parsel
|
367 |
+
# peft
|
368 |
+
# qwen-vl-utils
|
369 |
+
# transformers
|
370 |
+
pandas==2.2.3
|
371 |
+
# via
|
372 |
+
# gradio
|
373 |
+
# llama-index-readers-file
|
374 |
+
# pymilvus
|
375 |
+
parsel==1.10.0
|
376 |
+
# via crawlee
|
377 |
+
pdf2image==1.17.0
|
378 |
+
# via insurance-assistants (pyproject.toml)
|
379 |
+
peft==0.15.2
|
380 |
+
# via colpali-engine
|
381 |
+
pillow==11.2.1
|
382 |
+
# via
|
383 |
+
# colpali-engine
|
384 |
+
# gradio
|
385 |
+
# llama-index-core
|
386 |
+
# pdf2image
|
387 |
+
# qwen-vl-utils
|
388 |
+
# smolagents
|
389 |
+
# torchvision
|
390 |
+
platformdirs==4.3.8
|
391 |
+
# via
|
392 |
+
# banks
|
393 |
+
# llama-cloud-services
|
394 |
+
playwright==1.52.0
|
395 |
+
# via
|
396 |
+
# crawlee
|
397 |
+
# llama-index-tools-playwright
|
398 |
+
primp==0.15.0
|
399 |
+
# via duckduckgo-search
|
400 |
+
propcache==0.3.1
|
401 |
+
# via
|
402 |
+
# aiohttp
|
403 |
+
# yarl
|
404 |
+
protego==0.4.0
|
405 |
+
# via crawlee
|
406 |
+
protobuf==6.31.1
|
407 |
+
# via pymilvus
|
408 |
+
psutil==7.0.0
|
409 |
+
# via
|
410 |
+
# accelerate
|
411 |
+
# crawlee
|
412 |
+
# peft
|
413 |
+
pycparser==2.22
|
414 |
+
# via cffi
|
415 |
+
pydantic==2.11.5
|
416 |
+
# via
|
417 |
+
# insurance-assistants (pyproject.toml)
|
418 |
+
# banks
|
419 |
+
# crawlee
|
420 |
+
# fastapi
|
421 |
+
# gradio
|
422 |
+
# llama-cloud
|
423 |
+
# llama-cloud-services
|
424 |
+
# llama-index-core
|
425 |
+
# openai
|
426 |
+
# pydantic-settings
|
427 |
+
pydantic-core==2.33.2
|
428 |
+
# via pydantic
|
429 |
+
pydantic-settings==2.6.1
|
430 |
+
# via crawlee
|
431 |
+
pydub==0.25.1
|
432 |
+
# via gradio
|
433 |
+
pyee==13.0.0
|
434 |
+
# via
|
435 |
+
# crawlee
|
436 |
+
# playwright
|
437 |
+
pygments==2.19.1
|
438 |
+
# via rich
|
439 |
+
pymilvus==2.5.10
|
440 |
+
# via insurance-assistants (pyproject.toml)
|
441 |
+
pypdf==5.5.0
|
442 |
+
# via llama-index-readers-file
|
443 |
+
pyprojroot==0.3.0
|
444 |
+
# via insurance-assistants (pyproject.toml)
|
445 |
+
python-dateutil==2.9.0.post0
|
446 |
+
# via
|
447 |
+
# arrow
|
448 |
+
# pandas
|
449 |
+
python-dotenv==1.1.0
|
450 |
+
# via
|
451 |
+
# insurance-assistants (pyproject.toml)
|
452 |
+
# llama-cloud-services
|
453 |
+
# pydantic-settings
|
454 |
+
# pymilvus
|
455 |
+
# smolagents
|
456 |
+
python-multipart==0.0.20
|
457 |
+
# via gradio
|
458 |
+
python-slugify==8.0.4
|
459 |
+
# via cookiecutter
|
460 |
+
pytz==2025.2
|
461 |
+
# via pandas
|
462 |
+
pyyaml==6.0.2
|
463 |
+
# via
|
464 |
+
# accelerate
|
465 |
+
# cookiecutter
|
466 |
+
# gradio
|
467 |
+
# huggingface-hub
|
468 |
+
# llama-index-core
|
469 |
+
# peft
|
470 |
+
# transformers
|
471 |
+
qwen-vl-utils==0.0.11
|
472 |
+
# via insurance-assistants (pyproject.toml)
|
473 |
+
readchar==4.2.1
|
474 |
+
# via inquirer
|
475 |
+
regex==2024.11.6
|
476 |
+
# via
|
477 |
+
# nltk
|
478 |
+
# tiktoken
|
479 |
+
# transformers
|
480 |
+
requests==2.32.3
|
481 |
+
# via
|
482 |
+
# insurance-assistants (pyproject.toml)
|
483 |
+
# colpali-engine
|
484 |
+
# cookiecutter
|
485 |
+
# huggingface-hub
|
486 |
+
# llama-index-core
|
487 |
+
# qwen-vl-utils
|
488 |
+
# requests-file
|
489 |
+
# smolagents
|
490 |
+
# tiktoken
|
491 |
+
# tldextract
|
492 |
+
# transformers
|
493 |
+
# wikipedia-api
|
494 |
+
requests-file==2.1.0
|
495 |
+
# via tldextract
|
496 |
+
rich==14.0.0
|
497 |
+
# via
|
498 |
+
# cookiecutter
|
499 |
+
# smolagents
|
500 |
+
# typer
|
501 |
+
ruff==0.11.12
|
502 |
+
# via gradio
|
503 |
+
runs==1.2.2
|
504 |
+
# via editor
|
505 |
+
safehttpx==0.1.6
|
506 |
+
# via gradio
|
507 |
+
safetensors==0.5.3
|
508 |
+
# via
|
509 |
+
# accelerate
|
510 |
+
# peft
|
511 |
+
# transformers
|
512 |
+
scikit-learn==1.6.1
|
513 |
+
# via crawlee
|
514 |
+
scipy==1.15.3
|
515 |
+
# via
|
516 |
+
# colpali-engine
|
517 |
+
# scikit-learn
|
518 |
+
semantic-version==2.10.0
|
519 |
+
# via gradio
|
520 |
+
setuptools==80.9.0
|
521 |
+
# via
|
522 |
+
# pymilvus
|
523 |
+
# torch
|
524 |
+
shellingham==1.5.4
|
525 |
+
# via typer
|
526 |
+
six==1.17.0
|
527 |
+
# via
|
528 |
+
# html5lib
|
529 |
+
# markdownify
|
530 |
+
# python-dateutil
|
531 |
+
smolagents==1.17.0
|
532 |
+
# via insurance-assistants (pyproject.toml)
|
533 |
+
sniffio==1.3.1
|
534 |
+
# via
|
535 |
+
# anyio
|
536 |
+
# openai
|
537 |
+
sortedcollections==2.1.0
|
538 |
+
# via crawlee
|
539 |
+
sortedcontainers==2.4.0
|
540 |
+
# via
|
541 |
+
# crawlee
|
542 |
+
# sortedcollections
|
543 |
+
soupsieve==2.7
|
544 |
+
# via beautifulsoup4
|
545 |
+
sqlalchemy==2.0.41
|
546 |
+
# via llama-index-core
|
547 |
+
starlette==0.46.2
|
548 |
+
# via
|
549 |
+
# fastapi
|
550 |
+
# gradio
|
551 |
+
striprtf==0.0.26
|
552 |
+
# via llama-index-readers-file
|
553 |
+
sympy==1.13.1
|
554 |
+
# via torch
|
555 |
+
tenacity==9.1.2
|
556 |
+
# via llama-index-core
|
557 |
+
text-unidecode==1.3
|
558 |
+
# via python-slugify
|
559 |
+
threadpoolctl==3.6.0
|
560 |
+
# via scikit-learn
|
561 |
+
tiktoken==0.9.0
|
562 |
+
# via llama-index-core
|
563 |
+
tldextract==5.3.0
|
564 |
+
# via crawlee
|
565 |
+
tokenizers==0.21.1
|
566 |
+
# via transformers
|
567 |
+
tomlkit==0.13.2
|
568 |
+
# via gradio
|
569 |
+
torch==2.6.0
|
570 |
+
# via
|
571 |
+
# accelerate
|
572 |
+
# colpali-engine
|
573 |
+
# peft
|
574 |
+
# torchvision
|
575 |
+
torchvision==0.21.0
|
576 |
+
# via insurance-assistants (pyproject.toml)
|
577 |
+
tqdm==4.67.1
|
578 |
+
# via
|
579 |
+
# huggingface-hub
|
580 |
+
# llama-index-core
|
581 |
+
# milvus-lite
|
582 |
+
# nltk
|
583 |
+
# openai
|
584 |
+
# peft
|
585 |
+
# transformers
|
586 |
+
transformers==4.51.3
|
587 |
+
# via
|
588 |
+
# colpali-engine
|
589 |
+
# peft
|
590 |
+
triton==3.2.0
|
591 |
+
# via torch
|
592 |
+
typer==0.16.0
|
593 |
+
# via
|
594 |
+
# crawlee
|
595 |
+
# gradio
|
596 |
+
types-python-dateutil==2.9.0.20250516
|
597 |
+
# via arrow
|
598 |
+
typing-extensions==4.13.2
|
599 |
+
# via
|
600 |
+
# aiosqlite
|
601 |
+
# anyio
|
602 |
+
# beautifulsoup4
|
603 |
+
# crawlee
|
604 |
+
# fastapi
|
605 |
+
# gradio
|
606 |
+
# gradio-client
|
607 |
+
# huggingface-hub
|
608 |
+
# llama-index-core
|
609 |
+
# openai
|
610 |
+
# pydantic
|
611 |
+
# pydantic-core
|
612 |
+
# pyee
|
613 |
+
# pyprojroot
|
614 |
+
# sqlalchemy
|
615 |
+
# torch
|
616 |
+
# typer
|
617 |
+
# typing-inspect
|
618 |
+
# typing-inspection
|
619 |
+
typing-inspect==0.9.0
|
620 |
+
# via
|
621 |
+
# dataclasses-json
|
622 |
+
# llama-index-core
|
623 |
+
typing-inspection==0.4.1
|
624 |
+
# via pydantic
|
625 |
+
tzdata==2025.2
|
626 |
+
# via pandas
|
627 |
+
ujson==5.10.0
|
628 |
+
# via pymilvus
|
629 |
+
urllib3==2.4.0
|
630 |
+
# via requests
|
631 |
+
uvicorn==0.34.2
|
632 |
+
# via gradio
|
633 |
+
w3lib==2.3.1
|
634 |
+
# via parsel
|
635 |
+
wcwidth==0.2.13
|
636 |
+
# via blessed
|
637 |
+
webencodings==0.5.1
|
638 |
+
# via html5lib
|
639 |
+
websockets==15.0.1
|
640 |
+
# via gradio-client
|
641 |
+
wikipedia-api==0.8.1
|
642 |
+
# via insurance-assistants (pyproject.toml)
|
643 |
+
wrapt==1.17.2
|
644 |
+
# via
|
645 |
+
# deprecated
|
646 |
+
# llama-index-core
|
647 |
+
xmod==1.8.1
|
648 |
+
# via
|
649 |
+
# editor
|
650 |
+
# runs
|
651 |
+
yarl==1.20.0
|
652 |
+
# via
|
653 |
+
# aiohttp
|
654 |
+
# crawlee
|
655 |
+
zstandard==0.23.0
|
656 |
+
# via httpx
|
src/insurance_assistants/__init__.py
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
def hello() -> str:
|
2 |
+
return "Hello from insurance-assistants!"
|
src/insurance_assistants/agents.py
ADDED
@@ -0,0 +1,131 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from pathlib import Path
|
2 |
+
|
3 |
+
from dotenv import find_dotenv, load_dotenv
|
4 |
+
from huggingface_hub import InferenceClient
|
5 |
+
from smolagents import (
|
6 |
+
CodeAgent,
|
7 |
+
DuckDuckGoSearchTool,
|
8 |
+
FinalAnswerTool,
|
9 |
+
InferenceClientModel,
|
10 |
+
PythonInterpreterTool,
|
11 |
+
Tool,
|
12 |
+
ToolCallingAgent,
|
13 |
+
VisitWebpageTool,
|
14 |
+
WikipediaSearchTool,
|
15 |
+
)
|
16 |
+
|
17 |
+
from src.insurance_assistants.complex_rag import RAG
|
18 |
+
from src.insurance_assistants.consts import PROMPT_PREFIX
|
19 |
+
|
20 |
+
_ = load_dotenv(dotenv_path=find_dotenv())
|
21 |
+
rag_app = RAG()
|
22 |
+
# FIXME Comment the following if you want to reprocess everything
|
23 |
+
rag_app.vectordb_id = "policy_wordings"
|
24 |
+
|
25 |
+
|
26 |
+
class InsuranceInfoRetriever(Tool):
|
27 |
+
name = "InsuranceInfoRetriever"
|
28 |
+
description = "Retrieves information from insurance documents."
|
29 |
+
inputs = {
|
30 |
+
"query": {"type": "string", "description": "The query to search for."},
|
31 |
+
}
|
32 |
+
output_type = "string"
|
33 |
+
|
34 |
+
def forward(self, query: str) -> str:
|
35 |
+
client = InferenceClient(
|
36 |
+
provider="hyperbolic",
|
37 |
+
bill_to="VitalNest",
|
38 |
+
)
|
39 |
+
results = rag_app.search_documents(query)
|
40 |
+
img_paths = [Path(res[0]) for res in results]
|
41 |
+
|
42 |
+
grouped_images = [rag_app.encode_image_to_base64(pth) for pth in img_paths]
|
43 |
+
chat_template = [
|
44 |
+
{
|
45 |
+
"role": "system",
|
46 |
+
"content": """You find answers from the relevant documents. Answer only
|
47 |
+
from these documents. If answer isn't available return 'Question cannot be answered based
|
48 |
+
on the documents provided.' """,
|
49 |
+
},
|
50 |
+
{
|
51 |
+
"role": "user",
|
52 |
+
"content": [
|
53 |
+
{
|
54 |
+
"type": "image_url",
|
55 |
+
"image_url": {"url": f"data:image/jpeg;base64,{image}"},
|
56 |
+
}
|
57 |
+
for image in grouped_images
|
58 |
+
]
|
59 |
+
+ [{"type": "text", "text": query}],
|
60 |
+
},
|
61 |
+
]
|
62 |
+
completion = client.chat.completions.create(
|
63 |
+
model="Qwen/Qwen2.5-VL-72B-Instruct",
|
64 |
+
messages=chat_template,
|
65 |
+
temperature=0.1,
|
66 |
+
max_tokens=10_000,
|
67 |
+
)
|
68 |
+
answer = completion.choices[0].message.content
|
69 |
+
if answer:
|
70 |
+
answer += f"The information was retrived from the following documents: {img_paths}"
|
71 |
+
return answer if answer else ""
|
72 |
+
|
73 |
+
|
74 |
+
insurance_agent = CodeAgent(
|
75 |
+
tools=[InsuranceInfoRetriever(), FinalAnswerTool()],
|
76 |
+
model=InferenceClientModel(bill_to="VitalNest", temperature=0.1),
|
77 |
+
additional_authorized_imports=["os", "requests", "bs4", "pil", "base64", "io"],
|
78 |
+
max_steps=1,
|
79 |
+
verbosity_level=-1,
|
80 |
+
name="insurance_agent",
|
81 |
+
description="You answer health insurance questions based on the InsuranceInfoRetriever "
|
82 |
+
"tool. All health insurance questions must be answered by you.",
|
83 |
+
)
|
84 |
+
websearch_agent = ToolCallingAgent(
|
85 |
+
model=InferenceClientModel(
|
86 |
+
model_id="Qwen/Qwen3-30B-A3B", bill_to="VitalNest", temperature=0.1
|
87 |
+
),
|
88 |
+
tools=[
|
89 |
+
VisitWebpageTool(max_output_length=20_000),
|
90 |
+
DuckDuckGoSearchTool(max_results=5),
|
91 |
+
FinalAnswerTool(),
|
92 |
+
],
|
93 |
+
max_steps=4,
|
94 |
+
verbosity_level=-1,
|
95 |
+
name="web_search_agent",
|
96 |
+
planning_interval=2,
|
97 |
+
description="Searches the web with a particular query.",
|
98 |
+
)
|
99 |
+
|
100 |
+
wikipedia_agent = ToolCallingAgent(
|
101 |
+
model=InferenceClientModel(
|
102 |
+
model_id="Qwen/Qwen3-30B-A3B", bill_to="VitalNest", temperature=0.1
|
103 |
+
),
|
104 |
+
tools=[
|
105 |
+
WikipediaSearchTool(user_agent="WikiAssistant (merlin@example.com)"),
|
106 |
+
FinalAnswerTool(),
|
107 |
+
],
|
108 |
+
max_steps=3,
|
109 |
+
verbosity_level=-1,
|
110 |
+
name="wikipedia_agent",
|
111 |
+
description="Searches Wikipedia for a topic.",
|
112 |
+
)
|
113 |
+
|
114 |
+
manager_agent = CodeAgent(
|
115 |
+
tools=[FinalAnswerTool(), PythonInterpreterTool()],
|
116 |
+
additional_authorized_imports=["os"],
|
117 |
+
model=InferenceClientModel(
|
118 |
+
model_id="Qwen/Qwen3-235B-A22B",
|
119 |
+
bill_to="VitalNest",
|
120 |
+
temperature=0.1,
|
121 |
+
),
|
122 |
+
managed_agents=[websearch_agent, wikipedia_agent, insurance_agent],
|
123 |
+
max_steps=10,
|
124 |
+
planning_interval=2,
|
125 |
+
verbosity_level=-1,
|
126 |
+
add_base_tools=True,
|
127 |
+
name="Versatile_Multi_Agent",
|
128 |
+
description="Answer health insurance related questions from pre-defined set of "
|
129 |
+
"health insurance documents, search wikipedia and the web for general information.",
|
130 |
+
)
|
131 |
+
manager_agent.system_prompt = manager_agent.system_prompt + PROMPT_PREFIX
|
src/insurance_assistants/complex_rag.py
ADDED
@@ -0,0 +1,600 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# %%
|
2 |
+
import base64
|
3 |
+
import concurrent.futures
|
4 |
+
import logging
|
5 |
+
import os
|
6 |
+
import shutil
|
7 |
+
from io import BytesIO
|
8 |
+
from pathlib import Path
|
9 |
+
|
10 |
+
import numpy as np
|
11 |
+
import torch
|
12 |
+
from colpali_engine.models import (
|
13 |
+
# ColPali,
|
14 |
+
# ColPaliProcessor,
|
15 |
+
ColQwen2_5,
|
16 |
+
ColQwen2_5_Processor,
|
17 |
+
)
|
18 |
+
from colpali_engine.utils.torch_utils import ListDataset, get_torch_device
|
19 |
+
from dotenv import find_dotenv, load_dotenv
|
20 |
+
from openai import OpenAI
|
21 |
+
from pdf2image import convert_from_path
|
22 |
+
from PIL import Image
|
23 |
+
from pymilvus import DataType, MilvusClient
|
24 |
+
from torch.utils.data import DataLoader
|
25 |
+
from tqdm import tqdm
|
26 |
+
|
27 |
+
from src.insurance_assistants.consts import PROJECT_ROOT_DIR, PROMPT
|
28 |
+
|
29 |
+
# Setup logger
|
30 |
+
logging.basicConfig(level=logging.INFO)
|
31 |
+
logger = logging.getLogger(__name__)
|
32 |
+
|
33 |
+
# %%
|
34 |
+
model_name = "vidore/colqwen2.5-v0.2"
|
35 |
+
# model_name = "vidore/colpali-v1.2"
|
36 |
+
device = get_torch_device()
|
37 |
+
|
38 |
+
model = ColQwen2_5.from_pretrained(
|
39 |
+
# model = ColPali.from_pretrained(
|
40 |
+
pretrained_model_name_or_path=model_name,
|
41 |
+
torch_dtype=torch.bfloat16,
|
42 |
+
device_map=device,
|
43 |
+
).eval()
|
44 |
+
|
45 |
+
processor = ColQwen2_5_Processor.from_pretrained(
|
46 |
+
# processor = ColPaliProcessor.from_pretrained(
|
47 |
+
pretrained_model_name_or_path=model_name,
|
48 |
+
use_fast=True,
|
49 |
+
)
|
50 |
+
_ = load_dotenv(dotenv_path=find_dotenv(raise_error_if_not_found=True))
|
51 |
+
openai_client = OpenAI()
|
52 |
+
|
53 |
+
|
54 |
+
# %%
|
55 |
+
class MilvusManager:
|
56 |
+
def __init__(self, milvus_uri, collection_name, create_collection, dim=128):
|
57 |
+
"""
|
58 |
+
Initializes the MilvusManager.
|
59 |
+
|
60 |
+
Args:
|
61 |
+
milvus_uri (str): URI for Milvus server.
|
62 |
+
collection_name (str): Name of the collection.
|
63 |
+
create_collection (bool): Whether to create a new collection.
|
64 |
+
dim (int, optional): Dimension of the vector. Defaults to 128.
|
65 |
+
"""
|
66 |
+
self.client = MilvusClient(uri=milvus_uri)
|
67 |
+
self.collection_name = collection_name
|
68 |
+
if self.client.has_collection(collection_name=self.collection_name):
|
69 |
+
self.client.load_collection(collection_name)
|
70 |
+
self.dim = dim
|
71 |
+
self.max_doc_id = 0
|
72 |
+
|
73 |
+
if create_collection:
|
74 |
+
self.create_collection()
|
75 |
+
self.create_index()
|
76 |
+
|
77 |
+
def create_collection(self):
|
78 |
+
"""
|
79 |
+
Creates a new collection in Milvus. Drops existing collection if present.
|
80 |
+
"""
|
81 |
+
if self.client.has_collection(collection_name=self.collection_name):
|
82 |
+
self.client.drop_collection(collection_name=self.collection_name)
|
83 |
+
schema = self.client.create_schema(
|
84 |
+
auto_id=True,
|
85 |
+
enable_dynamic_fields=True,
|
86 |
+
)
|
87 |
+
schema.add_field(field_name="pk", datatype=DataType.INT64, is_primary=True)
|
88 |
+
schema.add_field(
|
89 |
+
field_name="vector", datatype=DataType.FLOAT_VECTOR, dim=self.dim
|
90 |
+
)
|
91 |
+
schema.add_field(field_name="seq_id", datatype=DataType.INT16)
|
92 |
+
schema.add_field(field_name="doc_id", datatype=DataType.INT64)
|
93 |
+
schema.add_field(field_name="doc", datatype=DataType.VARCHAR, max_length=65535)
|
94 |
+
|
95 |
+
self.client.create_collection(
|
96 |
+
collection_name=self.collection_name, schema=schema
|
97 |
+
)
|
98 |
+
|
99 |
+
def create_index(self):
|
100 |
+
"""
|
101 |
+
Creates a vector index for the collection in Milvus.
|
102 |
+
"""
|
103 |
+
self.client.release_collection(collection_name=self.collection_name)
|
104 |
+
self.client.drop_index(
|
105 |
+
collection_name=self.collection_name, index_name="vector"
|
106 |
+
)
|
107 |
+
index_params = self.client.prepare_index_params()
|
108 |
+
index_params.add_index(
|
109 |
+
field_name="vector",
|
110 |
+
index_name="vector_index",
|
111 |
+
index_type="FLAT",
|
112 |
+
metric_type="IP",
|
113 |
+
params={
|
114 |
+
"M": 16,
|
115 |
+
"efConstruction": 500,
|
116 |
+
},
|
117 |
+
)
|
118 |
+
|
119 |
+
self.client.create_index(
|
120 |
+
collection_name=self.collection_name, index_params=index_params, sync=True
|
121 |
+
)
|
122 |
+
|
123 |
+
def create_scalar_index(self):
|
124 |
+
"""
|
125 |
+
Creates a scalar index for the doc_id field in Milvus.
|
126 |
+
"""
|
127 |
+
self.client.release_collection(collection_name=self.collection_name)
|
128 |
+
|
129 |
+
index_params = self.client.prepare_index_params()
|
130 |
+
index_params.add_index(
|
131 |
+
field_name="doc_id",
|
132 |
+
index_name="int32_index",
|
133 |
+
index_type="INVERTED",
|
134 |
+
)
|
135 |
+
|
136 |
+
self.client.create_index(
|
137 |
+
collection_name=self.collection_name, index_params=index_params, sync=True
|
138 |
+
)
|
139 |
+
|
140 |
+
def search(self, data, topk):
|
141 |
+
"""
|
142 |
+
Searches for the top-k most similar documents in Milvus.
|
143 |
+
|
144 |
+
Args:
|
145 |
+
data (np.ndarray): Query vector.
|
146 |
+
topk (int): Number of top results to return.
|
147 |
+
|
148 |
+
Returns:
|
149 |
+
list: List of (score, doc_id) tuples.
|
150 |
+
"""
|
151 |
+
search_params = {"metric_type": "IP", "params": {}}
|
152 |
+
results = self.client.search(
|
153 |
+
self.collection_name,
|
154 |
+
data,
|
155 |
+
limit=50,
|
156 |
+
output_fields=["vector", "seq_id", "doc_id"],
|
157 |
+
search_params=search_params,
|
158 |
+
)
|
159 |
+
doc_ids = set()
|
160 |
+
for r_id in range(len(results)):
|
161 |
+
for r in range(len(results[r_id])):
|
162 |
+
doc_ids.add(results[r_id][r]["entity"]["doc_id"])
|
163 |
+
|
164 |
+
scores = []
|
165 |
+
|
166 |
+
def rerank_single_doc(doc_id, data, client, collection_name):
|
167 |
+
doc_colqwen_vecs = client.query(
|
168 |
+
collection_name=collection_name,
|
169 |
+
filter=f"doc_id in [{doc_id}, {doc_id + 1}]",
|
170 |
+
output_fields=["seq_id", "vector", "doc"],
|
171 |
+
limit=1000,
|
172 |
+
)
|
173 |
+
doc_vecs = np.vstack(
|
174 |
+
[doc_colqwen_vecs[i]["vector"] for i in range(len(doc_colqwen_vecs))]
|
175 |
+
)
|
176 |
+
score = np.dot(data, doc_vecs.T).max(1).sum()
|
177 |
+
return (score, doc_id)
|
178 |
+
|
179 |
+
with concurrent.futures.ThreadPoolExecutor(max_workers=300) as executor:
|
180 |
+
futures = {
|
181 |
+
executor.submit(
|
182 |
+
rerank_single_doc, doc_id, data, self.client, self.collection_name
|
183 |
+
): doc_id
|
184 |
+
for doc_id in doc_ids
|
185 |
+
}
|
186 |
+
for future in concurrent.futures.as_completed(futures):
|
187 |
+
score, doc_id = future.result()
|
188 |
+
scores.append((score, doc_id))
|
189 |
+
|
190 |
+
scores.sort(key=lambda x: x[0], reverse=True)
|
191 |
+
if len(scores) >= topk:
|
192 |
+
return scores[:topk]
|
193 |
+
else:
|
194 |
+
return scores
|
195 |
+
|
196 |
+
def insert(self, data):
|
197 |
+
"""
|
198 |
+
Inserts a document's vectors and metadata into Milvus.
|
199 |
+
|
200 |
+
Args:
|
201 |
+
data (dict): Dictionary containing 'colqwen_vecs', 'doc_id', and 'filepath'.
|
202 |
+
"""
|
203 |
+
colqwen_vecs = [vec for vec in data["colqwen_vecs"]]
|
204 |
+
seq_length = len(colqwen_vecs)
|
205 |
+
doc_ids = [data["doc_id"] for _ in range(seq_length)]
|
206 |
+
seq_ids = list(range(seq_length))
|
207 |
+
docs = [data["filepath"] for _ in range(seq_length)]
|
208 |
+
# docs = [""] * seq_length
|
209 |
+
# docs[0] = data["filepath"]
|
210 |
+
|
211 |
+
self.client.insert(
|
212 |
+
self.collection_name,
|
213 |
+
[
|
214 |
+
{
|
215 |
+
"vector": colqwen_vecs[i],
|
216 |
+
"seq_id": seq_ids[i],
|
217 |
+
"doc_id": doc_ids[i],
|
218 |
+
"doc": docs[i],
|
219 |
+
}
|
220 |
+
for i in range(seq_length)
|
221 |
+
],
|
222 |
+
)
|
223 |
+
|
224 |
+
def get_images_as_doc(self, images_with_vectors: list):
|
225 |
+
"""
|
226 |
+
Converts a list of image vectors and filepaths into Milvus insertable format.
|
227 |
+
|
228 |
+
Args:
|
229 |
+
images_with_vectors (list): List of dicts with 'colqwen_vecs' and 'filepath'.
|
230 |
+
|
231 |
+
Returns:
|
232 |
+
list: List of dicts ready for Milvus insertion.
|
233 |
+
"""
|
234 |
+
images_data = []
|
235 |
+
|
236 |
+
for i in range(len(images_with_vectors)):
|
237 |
+
self.max_doc_id += 1
|
238 |
+
data = {
|
239 |
+
"colqwen_vecs": images_with_vectors[i]["colqwen_vecs"],
|
240 |
+
"doc_id": self.max_doc_id,
|
241 |
+
"filepath": images_with_vectors[i]["filepath"],
|
242 |
+
}
|
243 |
+
images_data.append(data)
|
244 |
+
|
245 |
+
return images_data
|
246 |
+
|
247 |
+
def insert_images_data(self, image_data):
|
248 |
+
"""
|
249 |
+
Inserts multiple images' data into Milvus.
|
250 |
+
|
251 |
+
Args:
|
252 |
+
image_data (list): List of image data dicts.
|
253 |
+
"""
|
254 |
+
data = self.get_images_as_doc(image_data)
|
255 |
+
|
256 |
+
for i in range(len(data)):
|
257 |
+
self.insert(data[i])
|
258 |
+
|
259 |
+
|
260 |
+
# %%
|
261 |
+
class VectorProcessor:
|
262 |
+
def __init__(
|
263 |
+
self,
|
264 |
+
id: str,
|
265 |
+
create_collection=True,
|
266 |
+
):
|
267 |
+
"""
|
268 |
+
Initializes the VectorProcessor with Milvus, Colqwen, and PDF managers.
|
269 |
+
|
270 |
+
Args:
|
271 |
+
id (str): Unique identifier for the session/user.
|
272 |
+
create_collection (bool, optional): Whether to create a new collection. Defaults to True.
|
273 |
+
"""
|
274 |
+
# hashed_id = hashlib.md5(id.encode()).hexdigest()[:8]
|
275 |
+
# milvus_db_name = f"milvus_{hashed_id}.db"
|
276 |
+
milvus_db_name = (
|
277 |
+
PROJECT_ROOT_DIR / f"src/insurance_assistants/milvus_{id}.db"
|
278 |
+
).as_posix()
|
279 |
+
self.milvus_manager = MilvusManager(milvus_db_name, f"{id}", create_collection)
|
280 |
+
self.colqwen_manager = ColqwenManager()
|
281 |
+
self.pdf_manager = PdfManager()
|
282 |
+
|
283 |
+
def index(
|
284 |
+
self,
|
285 |
+
pdf_path: str,
|
286 |
+
id: str,
|
287 |
+
max_pages: int,
|
288 |
+
):
|
289 |
+
"""
|
290 |
+
Indexes a PDF file by converting pages to images, embedding them, and storing in Milvus.
|
291 |
+
|
292 |
+
Args:
|
293 |
+
pdf_path (str): Path to the PDF file.
|
294 |
+
id (str): Unique identifier.
|
295 |
+
max_pages (int): Maximum number of pages to process.
|
296 |
+
|
297 |
+
Returns:
|
298 |
+
list: List of saved image paths.
|
299 |
+
"""
|
300 |
+
logger.info(f"Indexing {pdf_path}, id: {id}, max_pages: {max_pages}")
|
301 |
+
|
302 |
+
image_paths = self.pdf_manager.save_images(id, pdf_path, max_pages)
|
303 |
+
|
304 |
+
logger.info(f"Saved {len(image_paths)} images")
|
305 |
+
|
306 |
+
colqwen_vecs = self.colqwen_manager.process_images(image_paths)
|
307 |
+
|
308 |
+
images_data = [
|
309 |
+
{"colqwen_vecs": colqwen_vecs[i], "filepath": image_paths[i]}
|
310 |
+
for i in range(len(image_paths))
|
311 |
+
]
|
312 |
+
|
313 |
+
logger.info(f"Inserting {len(images_data)} images data to Milvus")
|
314 |
+
|
315 |
+
self.milvus_manager.insert_images_data(images_data)
|
316 |
+
|
317 |
+
logger.info("Indexing completed")
|
318 |
+
|
319 |
+
return image_paths
|
320 |
+
|
321 |
+
def search(self, search_queries: list[str]):
|
322 |
+
logger.info(f"Searching for {len(search_queries)} queries")
|
323 |
+
|
324 |
+
final_res = []
|
325 |
+
|
326 |
+
for query in search_queries:
|
327 |
+
logger.info(f"Searching for query: {query}")
|
328 |
+
query_vec = self.colqwen_manager.process_text([query])[0]
|
329 |
+
search_res = self.milvus_manager.search(query_vec, topk=4)
|
330 |
+
logger.info(f"Search result: {search_res} for query: {query}")
|
331 |
+
final_res.append(search_res)
|
332 |
+
|
333 |
+
return final_res
|
334 |
+
|
335 |
+
|
336 |
+
# %%
|
337 |
+
class PdfManager:
|
338 |
+
def __init__(self):
|
339 |
+
"""
|
340 |
+
Initializes the PdfManager.
|
341 |
+
"""
|
342 |
+
pass
|
343 |
+
|
344 |
+
def clear_and_recreate_dir(self, output_folder):
|
345 |
+
logger.info(f"Clearing output folder {output_folder}")
|
346 |
+
|
347 |
+
if os.path.exists(output_folder):
|
348 |
+
shutil.rmtree(output_folder)
|
349 |
+
|
350 |
+
os.makedirs(output_folder)
|
351 |
+
|
352 |
+
def save_images(
|
353 |
+
self, id, pdf_path, max_pages, pages: list[int] = None, output_folder=None
|
354 |
+
) -> list[str]:
|
355 |
+
"""
|
356 |
+
Saves images of PDF pages to disk.
|
357 |
+
|
358 |
+
Args:
|
359 |
+
id (str): Unique identifier.
|
360 |
+
pdf_path (str): Path to the PDF file.
|
361 |
+
max_pages (int): Maximum number of pages to save.
|
362 |
+
pages (list[int], optional): Specific pages to save. Defaults to None.
|
363 |
+
|
364 |
+
Returns:
|
365 |
+
list[str]: List of saved image file paths.
|
366 |
+
"""
|
367 |
+
output_folder = (
|
368 |
+
Path(output_folder) if output_folder is not None else output_folder
|
369 |
+
)
|
370 |
+
if output_folder is None:
|
371 |
+
output_folder = PROJECT_ROOT_DIR / f"src/insurance_assistants/pages/{id}/"
|
372 |
+
if not output_folder.exists():
|
373 |
+
output_folder.mkdir(parents=True, exist_ok=True)
|
374 |
+
images = convert_from_path(pdf_path=pdf_path)
|
375 |
+
|
376 |
+
logger.info(
|
377 |
+
f"Saving images from {pdf_path} to {output_folder}. Max pages: {max_pages}"
|
378 |
+
)
|
379 |
+
|
380 |
+
# self.clear_and_recreate_dir(output_folder)
|
381 |
+
|
382 |
+
num_page_processed = 0
|
383 |
+
|
384 |
+
for i, image in enumerate(images):
|
385 |
+
if max_pages and num_page_processed >= max_pages:
|
386 |
+
break
|
387 |
+
|
388 |
+
if pages and i not in pages:
|
389 |
+
continue
|
390 |
+
|
391 |
+
full_save_path = output_folder / f"{id}_page_{i + 1}.png"
|
392 |
+
|
393 |
+
# logger.debug(f"Saving image to {full_save_path}")
|
394 |
+
|
395 |
+
image.save(fp=full_save_path, format="PNG")
|
396 |
+
|
397 |
+
num_page_processed += 1
|
398 |
+
|
399 |
+
return [
|
400 |
+
f"{output_folder}/{id}_page_{i + 1}.png" for i in range(num_page_processed)
|
401 |
+
]
|
402 |
+
|
403 |
+
|
404 |
+
# %%
|
405 |
+
class ColqwenManager:
|
406 |
+
def get_images(self, paths: list[str]) -> list[Image.Image]:
|
407 |
+
"""
|
408 |
+
Loads images from file paths.
|
409 |
+
|
410 |
+
Args:
|
411 |
+
paths (list[str]): List of image file paths.
|
412 |
+
|
413 |
+
Returns:
|
414 |
+
list[Image.Image]: List of PIL Image objects.
|
415 |
+
"""
|
416 |
+
return [Image.open(path) for path in paths]
|
417 |
+
|
418 |
+
def process_images(self, image_paths: list[str], batch_size=5):
|
419 |
+
logger.info(f"Processing {len(image_paths)} image_paths")
|
420 |
+
|
421 |
+
images = self.get_images(image_paths)
|
422 |
+
|
423 |
+
dataloader = DataLoader(
|
424 |
+
dataset=ListDataset[str](images),
|
425 |
+
batch_size=batch_size,
|
426 |
+
shuffle=False,
|
427 |
+
collate_fn=lambda x: processor.process_images(x),
|
428 |
+
)
|
429 |
+
|
430 |
+
ds: list[torch.Tensor] = []
|
431 |
+
for batch_doc in tqdm(dataloader):
|
432 |
+
with torch.no_grad():
|
433 |
+
batch_doc = {k: v.to(model.device) for k, v in batch_doc.items()}
|
434 |
+
embeddings_doc = model(**batch_doc)
|
435 |
+
ds.extend(list(torch.unbind(embeddings_doc.to(device))))
|
436 |
+
|
437 |
+
ds_np = [d.float().cpu().numpy() for d in ds]
|
438 |
+
|
439 |
+
return ds_np
|
440 |
+
|
441 |
+
def process_text(self, texts: list[str]):
|
442 |
+
logger.info(f"Processing {len(texts)} texts")
|
443 |
+
|
444 |
+
dataloader = DataLoader(
|
445 |
+
dataset=ListDataset[str](texts),
|
446 |
+
batch_size=1,
|
447 |
+
shuffle=False,
|
448 |
+
collate_fn=lambda x: processor.process_queries(x),
|
449 |
+
)
|
450 |
+
|
451 |
+
qs: list[torch.Tensor] = []
|
452 |
+
for batch_query in dataloader:
|
453 |
+
with torch.no_grad():
|
454 |
+
batch_query = {k: v.to(model.device) for k, v in batch_query.items()}
|
455 |
+
embeddings_query = model(**batch_query)
|
456 |
+
|
457 |
+
qs.extend(list(torch.unbind(embeddings_query.to(device))))
|
458 |
+
|
459 |
+
qs_np = [q.float().cpu().numpy() for q in qs]
|
460 |
+
|
461 |
+
return qs_np
|
462 |
+
|
463 |
+
|
464 |
+
# %%
|
465 |
+
# def generate_uuid(state):
|
466 |
+
# """
|
467 |
+
# Generates or retrieves a UUID for the user session.
|
468 |
+
|
469 |
+
# Args:
|
470 |
+
# state (dict): State dictionary containing 'user_uuid'.
|
471 |
+
|
472 |
+
# Returns:
|
473 |
+
# str: UUID string.
|
474 |
+
# """
|
475 |
+
# # Check if UUID already exists in session state
|
476 |
+
# if state["user_uuid"] is None:
|
477 |
+
# # Generate a new UUID if not already set
|
478 |
+
# state["user_uuid"] = str(uuid.uuid4())
|
479 |
+
|
480 |
+
# return state["user_uuid"]
|
481 |
+
|
482 |
+
|
483 |
+
class RAG:
|
484 |
+
def __init__(self):
|
485 |
+
"""
|
486 |
+
Initializes the RAG.
|
487 |
+
"""
|
488 |
+
self.vectordb_id = None
|
489 |
+
self.img_path_dir = PROJECT_ROOT_DIR / "src/insurance_assistants/pages/"
|
490 |
+
|
491 |
+
def create_vector_db(
|
492 |
+
self,
|
493 |
+
vectordb_id="policy_wordings",
|
494 |
+
dir=PROJECT_ROOT_DIR / "data",
|
495 |
+
max_pages=200,
|
496 |
+
):
|
497 |
+
"""
|
498 |
+
Uploads a PDF file, converts it to images, and indexes it.
|
499 |
+
|
500 |
+
Args:
|
501 |
+
state (dict): State dictionary for user session.
|
502 |
+
file: Uploaded file object.
|
503 |
+
max_pages (int, optional): Maximum number of pages to process. Defaults to 100.
|
504 |
+
|
505 |
+
Returns:
|
506 |
+
str: Status message.
|
507 |
+
"""
|
508 |
+
|
509 |
+
logger.info(f"Converting files in: {dir}.")
|
510 |
+
|
511 |
+
try:
|
512 |
+
for idx, f in enumerate((dir / "policy_wordings").iterdir()):
|
513 |
+
if idx == 0:
|
514 |
+
vectorprocessor = VectorProcessor(
|
515 |
+
id=vectordb_id, create_collection=True
|
516 |
+
)
|
517 |
+
self.vectordb_id = vectordb_id
|
518 |
+
_ = vectorprocessor.index(pdf_path=f, id=f.stem, max_pages=max_pages)
|
519 |
+
vectorprocessor.milvus_manager.client.close()
|
520 |
+
return f"✅ Created the vector_db: milvus_{vectordb_id} under `src` dir."
|
521 |
+
except Exception as err:
|
522 |
+
return f"❌ Error creating vector_db: {err}"
|
523 |
+
|
524 |
+
def search_documents(self, query):
|
525 |
+
if self.vectordb_id is None:
|
526 |
+
raise Exception(
|
527 |
+
"Create the vector db first by invoking `create_vector_db`."
|
528 |
+
)
|
529 |
+
try:
|
530 |
+
vectorprocessor = VectorProcessor(
|
531 |
+
id=self.vectordb_id, create_collection=False
|
532 |
+
)
|
533 |
+
|
534 |
+
search_results = vectorprocessor.search(search_queries=[query])[0]
|
535 |
+
|
536 |
+
check_res = vectorprocessor.milvus_manager.client.query(
|
537 |
+
collection_name=self.vectordb_id,
|
538 |
+
filter=f"doc_id in {[d[1] for d in search_results]}",
|
539 |
+
output_fields=["doc_id", "doc"],
|
540 |
+
)
|
541 |
+
vectorprocessor.milvus_manager.client.close()
|
542 |
+
img_path_doc_id = set((i["doc"], i["doc_id"]) for i in check_res)
|
543 |
+
|
544 |
+
logger.info("✅ Retrieved the images for answering query.")
|
545 |
+
return img_path_doc_id
|
546 |
+
|
547 |
+
except Exception as err:
|
548 |
+
return f"❌ Error during search: {err}"
|
549 |
+
|
550 |
+
def encode_image_to_base64(self, image_path):
|
551 |
+
"""
|
552 |
+
Encodes an image file to a base64 string.
|
553 |
+
|
554 |
+
Args:
|
555 |
+
image_path (str): Path to the image file.
|
556 |
+
|
557 |
+
Returns:
|
558 |
+
str: Base64 encoded image string.
|
559 |
+
"""
|
560 |
+
image = Image.open(image_path)
|
561 |
+
buffered = BytesIO()
|
562 |
+
image.save(buffered, format="JPEG")
|
563 |
+
return base64.b64encode(buffered.getvalue()).decode("utf-8")
|
564 |
+
|
565 |
+
def query_gpt4o_mini(self, query, image_path):
|
566 |
+
"""
|
567 |
+
Queries the OpenAI GPT-4o-mini model with a query and images.
|
568 |
+
|
569 |
+
Args:
|
570 |
+
query (str): The user query.
|
571 |
+
image_path (list): List of image file paths.
|
572 |
+
|
573 |
+
Returns:
|
574 |
+
str: The AI response.
|
575 |
+
"""
|
576 |
+
try:
|
577 |
+
base64_images = [self.encode_image_to_base64(pth) for pth in image_path]
|
578 |
+
|
579 |
+
response = openai_client.chat.completions.create(
|
580 |
+
model="gpt-4o-mini",
|
581 |
+
messages=[
|
582 |
+
{
|
583 |
+
"role": "user",
|
584 |
+
"content": [
|
585 |
+
{"type": "text", "text": PROMPT.format(query=query)}
|
586 |
+
]
|
587 |
+
+ [
|
588 |
+
{
|
589 |
+
"type": "image_url",
|
590 |
+
"image_url": {"url": f"data:image/jpeg;base64,{im}"},
|
591 |
+
}
|
592 |
+
for im in base64_images
|
593 |
+
],
|
594 |
+
}
|
595 |
+
],
|
596 |
+
max_tokens=500,
|
597 |
+
)
|
598 |
+
return response.choices[0].message.content
|
599 |
+
except Exception as err:
|
600 |
+
return f"Unable to generate the final output due to: {err}."
|
src/insurance_assistants/consts.py
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from pyprojroot import find_root, has_file
|
2 |
+
|
3 |
+
PROJECT_ROOT_DIR = find_root(criterion=has_file("README.md"))
|
4 |
+
|
5 |
+
PROMPT = """
|
6 |
+
You are a smart assistant designed to answer questions about a PDF document.
|
7 |
+
You are given relevant information in the form of PDF pages. Use them to construct a short response to the question, and cite your sources (page numbers, etc).
|
8 |
+
If it is not possible to answer using the provided pages, do not attempt to provide an answer and simply say the answer is not present within the documents.
|
9 |
+
Give detailed and extensive answers, only containing info in the pages you are given.
|
10 |
+
You can answer using information contained in plots and figures if necessary.
|
11 |
+
Answer in the same language as the query.
|
12 |
+
|
13 |
+
Query: {query}
|
14 |
+
PDF pages:
|
15 |
+
"""
|
16 |
+
|
17 |
+
PRIMARY_HEADING = """# An Agentic RAG for Health Insurance Documents
|
18 |
+
#### This agent answers health insurance related questions from pre-ingested set \
|
19 |
+
of health insurance documents, search wikipedia, search the web \
|
20 |
+
and execute basic python code. \
|
21 |
+
|
22 |
+
The pre-ingested health insurance documents can be viewed under `PDF Viewer` section.
|
23 |
+
"""
|
24 |
+
|
25 |
+
PROMPT_PREFIX = """\n
|
26 |
+
Apart from all the above instructions that we have given to you, FOLLOW the Additional Instructions below:
|
27 |
+
```
|
28 |
+
For any health insurance related queries, always use the `insurance_agent` first and return the results.
|
29 |
+
You are allowed to rephrase any query and detail it if required. When in doubt always ask the user a follow up question.
|
30 |
+
Don't assume anything.
|
31 |
+
```
|
32 |
+
|
33 |
+
"""
|
src/insurance_assistants/py.typed
ADDED
File without changes
|
src/insurance_assistants/ui.py
ADDED
@@ -0,0 +1,337 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
import mimetypes
|
3 |
+
import os
|
4 |
+
import re
|
5 |
+
import shutil
|
6 |
+
|
7 |
+
import gradio as gr
|
8 |
+
from dotenv import load_dotenv
|
9 |
+
from gradio_pdf import PDF
|
10 |
+
from smolagents.gradio_ui import _process_action_step, _process_final_answer_step
|
11 |
+
from smolagents.memory import ActionStep, FinalAnswerStep, MemoryStep, PlanningStep
|
12 |
+
from smolagents.models import ChatMessageStreamDelta
|
13 |
+
|
14 |
+
# from smolagents import CodeAgent, InferenceClientModel
|
15 |
+
from src.insurance_assistants.agents import manager_agent
|
16 |
+
from src.insurance_assistants.consts import PRIMARY_HEADING, PROJECT_ROOT_DIR
|
17 |
+
|
18 |
+
load_dotenv(override=True)
|
19 |
+
|
20 |
+
# Setup logger
|
21 |
+
logging.basicConfig(level=logging.INFO)
|
22 |
+
logger = logging.getLogger(__name__)
|
23 |
+
|
24 |
+
|
25 |
+
class UI:
|
26 |
+
"""A one-line interface to launch your agent in Gradio"""
|
27 |
+
|
28 |
+
def __init__(self, file_upload_folder: str | None = None):
|
29 |
+
self.file_upload_folder = file_upload_folder
|
30 |
+
if self.file_upload_folder is not None:
|
31 |
+
if not os.path.exists(file_upload_folder):
|
32 |
+
os.mkdir(file_upload_folder)
|
33 |
+
|
34 |
+
def pull_messages_from_step(
|
35 |
+
self, step_log: MemoryStep, skip_model_outputs: bool = False
|
36 |
+
):
|
37 |
+
"""Extract ChatMessage objects from agent steps with proper nesting.
|
38 |
+
|
39 |
+
Args:
|
40 |
+
step_log: The step log to display as gr.ChatMessage objects.
|
41 |
+
skip_model_outputs: If True, skip the model outputs when creating the gr.ChatMessage objects:
|
42 |
+
This is used for instance when streaming model outputs have already been displayed.
|
43 |
+
"""
|
44 |
+
if isinstance(step_log, ActionStep):
|
45 |
+
yield from _process_action_step(step_log, skip_model_outputs)
|
46 |
+
elif isinstance(step_log, PlanningStep):
|
47 |
+
pass
|
48 |
+
# yield from _process_planning_step(step_log, skip_model_outputs)
|
49 |
+
elif isinstance(step_log, FinalAnswerStep):
|
50 |
+
yield from _process_final_answer_step(step_log)
|
51 |
+
else:
|
52 |
+
raise ValueError(f"Unsupported step type: {type(step_log)}")
|
53 |
+
|
54 |
+
def stream_to_gradio(
|
55 |
+
self,
|
56 |
+
agent,
|
57 |
+
task: str,
|
58 |
+
task_images: list | None = None,
|
59 |
+
reset_agent_memory: bool = False,
|
60 |
+
additional_args: dict | None = None,
|
61 |
+
):
|
62 |
+
"""Runs an agent with the given task and streams the messages from the agent as gradio ChatMessages."""
|
63 |
+
intermediate_text = ""
|
64 |
+
for step_log in agent.run(
|
65 |
+
task,
|
66 |
+
images=task_images,
|
67 |
+
stream=True,
|
68 |
+
reset=reset_agent_memory,
|
69 |
+
additional_args=additional_args,
|
70 |
+
):
|
71 |
+
# Track tokens if model provides them
|
72 |
+
if getattr(agent.model, "last_input_token_count", None) is not None:
|
73 |
+
if isinstance(step_log, (ActionStep, PlanningStep)):
|
74 |
+
step_log.input_token_count = agent.model.last_input_token_count
|
75 |
+
step_log.output_token_count = agent.model.last_output_token_count
|
76 |
+
|
77 |
+
if isinstance(step_log, MemoryStep):
|
78 |
+
intermediate_text = ""
|
79 |
+
for message in self.pull_messages_from_step(
|
80 |
+
step_log,
|
81 |
+
# If we're streaming model outputs, no need to display them twice
|
82 |
+
skip_model_outputs=getattr(agent, "stream_outputs", False),
|
83 |
+
):
|
84 |
+
yield message
|
85 |
+
elif isinstance(step_log, ChatMessageStreamDelta):
|
86 |
+
intermediate_text += step_log.content or ""
|
87 |
+
yield intermediate_text
|
88 |
+
|
89 |
+
def interact_with_agent(self, prompt, messages, session_state):
|
90 |
+
# Get or create session-specific agent
|
91 |
+
if "agent" not in session_state:
|
92 |
+
# session_state["agent"] = CodeAgent(tools=[], model=InfenceClientModel())
|
93 |
+
session_state["agent"] = manager_agent
|
94 |
+
# Adding monitoring
|
95 |
+
try:
|
96 |
+
# log the existence of agent memory
|
97 |
+
has_memory = hasattr(session_state["agent"], "memory")
|
98 |
+
logger.info(f"Agent has memory: {has_memory}")
|
99 |
+
if has_memory:
|
100 |
+
logger.info(f"Memory type: {type(session_state['agent'].memory)}")
|
101 |
+
|
102 |
+
messages.append(gr.ChatMessage(role="user", content=prompt))
|
103 |
+
yield messages
|
104 |
+
|
105 |
+
for msg in self.stream_to_gradio(
|
106 |
+
agent=session_state["agent"],
|
107 |
+
task=prompt,
|
108 |
+
reset_agent_memory=False,
|
109 |
+
):
|
110 |
+
messages.append(msg)
|
111 |
+
yield messages
|
112 |
+
yield messages
|
113 |
+
except Exception as e:
|
114 |
+
logger.info(f"Error in interaction: {str(e)}")
|
115 |
+
raise
|
116 |
+
|
117 |
+
def upload_file(
|
118 |
+
self,
|
119 |
+
file,
|
120 |
+
file_uploads_log,
|
121 |
+
allowed_file_types=[
|
122 |
+
"application/pdf",
|
123 |
+
"application/vnd.openxmlformats-officedocument.wordprocessingml.document",
|
124 |
+
"text/plain",
|
125 |
+
],
|
126 |
+
):
|
127 |
+
"""
|
128 |
+
Handle file uploads, default allowed types are .pdf, .docx, and .txt
|
129 |
+
"""
|
130 |
+
if file is None:
|
131 |
+
return gr.Textbox("No file uploaded", visible=True), file_uploads_log
|
132 |
+
|
133 |
+
try:
|
134 |
+
mime_type, _ = mimetypes.guess_type(file.name)
|
135 |
+
except Exception as e:
|
136 |
+
return gr.Textbox(f"Error: {e}", visible=True), file_uploads_log
|
137 |
+
|
138 |
+
if mime_type not in allowed_file_types:
|
139 |
+
return gr.Textbox("File type disallowed", visible=True), file_uploads_log
|
140 |
+
|
141 |
+
# Sanitize file name
|
142 |
+
original_name = os.path.basename(file.name)
|
143 |
+
sanitized_name = re.sub(
|
144 |
+
r"[^\w\-.]", "_", original_name
|
145 |
+
) # Replace any non-alphanumeric, non-dash, or non-dot characters with underscores
|
146 |
+
|
147 |
+
type_to_ext = {}
|
148 |
+
for ext, t in mimetypes.types_map.items():
|
149 |
+
if t not in type_to_ext:
|
150 |
+
type_to_ext[t] = ext
|
151 |
+
|
152 |
+
# Ensure the extension correlates to the mime type
|
153 |
+
sanitized_name = sanitized_name.split(".")[:-1]
|
154 |
+
sanitized_name.append("" + type_to_ext[mime_type])
|
155 |
+
sanitized_name = "".join(sanitized_name)
|
156 |
+
|
157 |
+
# Save the uploaded file to the specified folder
|
158 |
+
file_path = os.path.join(
|
159 |
+
self.file_upload_folder, os.path.basename(sanitized_name)
|
160 |
+
)
|
161 |
+
shutil.copy(file.name, file_path)
|
162 |
+
|
163 |
+
return gr.Textbox(
|
164 |
+
f"File uploaded: {file_path}", visible=True
|
165 |
+
), file_uploads_log + [file_path]
|
166 |
+
|
167 |
+
def log_user_message(self, text_input, file_uploads_log):
|
168 |
+
return (
|
169 |
+
text_input
|
170 |
+
+ (
|
171 |
+
f"\nYou have been provided with these files, which might be helpful or not: {file_uploads_log}"
|
172 |
+
if len(file_uploads_log) > 0
|
173 |
+
else ""
|
174 |
+
),
|
175 |
+
gr.Textbox(
|
176 |
+
value="",
|
177 |
+
interactive=False,
|
178 |
+
placeholder="Please wait while the agent answers your question",
|
179 |
+
),
|
180 |
+
gr.Button(interactive=False),
|
181 |
+
)
|
182 |
+
|
183 |
+
def list_pdfs(self, dir=PROJECT_ROOT_DIR / "data/policy_wordings"):
|
184 |
+
file_names = [f.name for f in dir.iterdir()]
|
185 |
+
return file_names
|
186 |
+
|
187 |
+
def interrupt_agent(self, session_state):
|
188 |
+
if "agent" not in session_state:
|
189 |
+
session_state["agent"] = manager_agent
|
190 |
+
agent = session_state["agent"]
|
191 |
+
agent.interrupt()
|
192 |
+
return
|
193 |
+
|
194 |
+
def display_pdf(self, pdf_selector):
|
195 |
+
return PDF(
|
196 |
+
value=(f"{PROJECT_ROOT_DIR}/data/policy_wordings/{pdf_selector}"),
|
197 |
+
label="PDF Viewer",
|
198 |
+
show_label=True,
|
199 |
+
)
|
200 |
+
|
201 |
+
def launch(self, **kwargs):
|
202 |
+
with gr.Blocks(fill_height=True) as demo:
|
203 |
+
gr.Markdown(value=PRIMARY_HEADING)
|
204 |
+
|
205 |
+
@gr.render()
|
206 |
+
def layout(request: gr.Request):
|
207 |
+
# Render layout with sidebar
|
208 |
+
with gr.Blocks(
|
209 |
+
fill_height=True,
|
210 |
+
):
|
211 |
+
file_uploads_log = gr.State([])
|
212 |
+
with gr.Sidebar():
|
213 |
+
gr.Markdown(
|
214 |
+
value="""#### <span style="color:red"> The `interrupt` button doesn't stop the process instantaneously.</span>
|
215 |
+
<span style="color:green">You can continue to use the application upon pressing the interrupt button.</span>
|
216 |
+
"""
|
217 |
+
)
|
218 |
+
with gr.Group():
|
219 |
+
gr.Markdown(
|
220 |
+
value="**Your question, please...**", container=True
|
221 |
+
)
|
222 |
+
text_input = gr.Textbox(
|
223 |
+
lines=3,
|
224 |
+
label="Your question, please...",
|
225 |
+
container=False,
|
226 |
+
placeholder="Enter your prompt here and press Shift+Enter or press `Run`",
|
227 |
+
)
|
228 |
+
run_btn = gr.Button(value="Run", variant="primary")
|
229 |
+
agent_interrup_btn = gr.Button(
|
230 |
+
value="Interrupt", variant="stop"
|
231 |
+
)
|
232 |
+
|
233 |
+
# If an upload folder is provided, enable the upload feature
|
234 |
+
if self.file_upload_folder is not None:
|
235 |
+
upload_file = gr.File(label="Upload a file")
|
236 |
+
upload_status = gr.Textbox(
|
237 |
+
label="Upload Status",
|
238 |
+
interactive=False,
|
239 |
+
visible=False,
|
240 |
+
)
|
241 |
+
upload_file.change(
|
242 |
+
fn=self.upload_file,
|
243 |
+
inputs=[upload_file, file_uploads_log],
|
244 |
+
outputs=[upload_status, file_uploads_log],
|
245 |
+
)
|
246 |
+
|
247 |
+
gr.HTML("<br><br><h4><center>Powered by:</center></h4>")
|
248 |
+
with gr.Row():
|
249 |
+
gr.HTML("""<div style="display: flex; align-items: center; gap: 8px; font-family: system-ui, -apple-system, sans-serif;">
|
250 |
+
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/smolagents/mascot_smol.png" style="width: 32px; height: 32px; object-fit: contain;" alt="logo">
|
251 |
+
<a target="_blank" href="https://github.com/huggingface/smolagents"><b>huggingface/smolagents</b></a>
|
252 |
+
</div>""")
|
253 |
+
|
254 |
+
# Add session state to store session-specific data
|
255 |
+
session_state = gr.State({})
|
256 |
+
# Initialize empty state for each session
|
257 |
+
stored_messages = gr.State([])
|
258 |
+
chatbot = gr.Chatbot(
|
259 |
+
label="Health Insurance Agent",
|
260 |
+
type="messages",
|
261 |
+
avatar_images=(
|
262 |
+
None,
|
263 |
+
"https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/smolagents/mascot_smol.png",
|
264 |
+
),
|
265 |
+
resizeable=False,
|
266 |
+
scale=1,
|
267 |
+
elem_id="Insurance-Agent",
|
268 |
+
)
|
269 |
+
with gr.Group():
|
270 |
+
gr.Markdown("### 📈 PDF Viewer")
|
271 |
+
pdf_choices = self.list_pdfs()
|
272 |
+
pdf_selector = gr.Dropdown(
|
273 |
+
choices=pdf_choices,
|
274 |
+
label="Select a PDF",
|
275 |
+
info="Choose one",
|
276 |
+
show_label=True,
|
277 |
+
interactive=True,
|
278 |
+
)
|
279 |
+
pdf_viewer = PDF(
|
280 |
+
label="PDF Viewer",
|
281 |
+
show_label=True,
|
282 |
+
)
|
283 |
+
pdf_selector.change(
|
284 |
+
fn=self.display_pdf, inputs=pdf_selector, outputs=pdf_viewer
|
285 |
+
)
|
286 |
+
|
287 |
+
text_input.submit(
|
288 |
+
fn=self.log_user_message,
|
289 |
+
inputs=[text_input, file_uploads_log],
|
290 |
+
outputs=[stored_messages, text_input, run_btn],
|
291 |
+
).then(
|
292 |
+
fn=self.interact_with_agent,
|
293 |
+
# Include session_state in function calls
|
294 |
+
inputs=[stored_messages, chatbot, session_state],
|
295 |
+
outputs=[chatbot],
|
296 |
+
).then(
|
297 |
+
fn=lambda: (
|
298 |
+
gr.Textbox(
|
299 |
+
interactive=True,
|
300 |
+
placeholder="Enter your prompt here or press `Run`",
|
301 |
+
),
|
302 |
+
gr.Button(interactive=True),
|
303 |
+
),
|
304 |
+
inputs=None,
|
305 |
+
outputs=[text_input, run_btn],
|
306 |
+
)
|
307 |
+
run_btn.click(
|
308 |
+
fn=self.log_user_message,
|
309 |
+
inputs=[text_input, file_uploads_log],
|
310 |
+
outputs=[stored_messages, text_input, run_btn],
|
311 |
+
).then(
|
312 |
+
fn=self.interact_with_agent,
|
313 |
+
# Include session_state in function calls
|
314 |
+
inputs=[stored_messages, chatbot, session_state],
|
315 |
+
outputs=[chatbot],
|
316 |
+
).then(
|
317 |
+
fn=lambda: (
|
318 |
+
gr.Textbox(
|
319 |
+
interactive=True,
|
320 |
+
placeholder="Enter your prompt here or press `Run`",
|
321 |
+
),
|
322 |
+
gr.Button(interactive=True),
|
323 |
+
),
|
324 |
+
inputs=None,
|
325 |
+
outputs=[text_input, run_btn],
|
326 |
+
)
|
327 |
+
agent_interrup_btn.click(
|
328 |
+
fn=self.interrupt_agent,
|
329 |
+
inputs=[session_state],
|
330 |
+
)
|
331 |
+
|
332 |
+
demo.launch(debug=True, **kwargs)
|
333 |
+
|
334 |
+
|
335 |
+
# if __name__=="__main__":
|
336 |
+
# UI().launch(share=True,
|
337 |
+
# allowed_paths=[(PROJECT_ROOT_DIR /"data/policy_wordings").as_posix()])
|
uv.lock
ADDED
The diff for this file is too large to render.
See raw diff
|
|