Spaces:
Running
Running
feat: using a detailed prompt for the VLM.
Browse files
src/insurance_assistants/agents.py
CHANGED
@@ -16,7 +16,7 @@ from smolagents import (
|
|
16 |
)
|
17 |
|
18 |
from src.insurance_assistants.complex_rag import RAG
|
19 |
-
from src.insurance_assistants.consts import PROMPT_PREFIX
|
20 |
|
21 |
# _ = load_dotenv(dotenv_path=find_dotenv())
|
22 |
rag_app = RAG()
|
@@ -45,9 +45,11 @@ class InsuranceInfoRetriever(Tool):
|
|
45 |
chat_template = [
|
46 |
{
|
47 |
"role": "system",
|
48 |
-
"content":
|
49 |
-
|
50 |
-
|
|
|
|
|
51 |
},
|
52 |
{
|
53 |
"role": "user",
|
@@ -76,7 +78,8 @@ class InsuranceInfoRetriever(Tool):
|
|
76 |
insurance_agent = CodeAgent(
|
77 |
tools=[InsuranceInfoRetriever(), FinalAnswerTool()],
|
78 |
model=InferenceClientModel(bill_to="VitalNest", temperature=0.1,
|
79 |
-
token=os.getenv("HF_TOKEN")
|
|
|
80 |
additional_authorized_imports=["os", "requests", "bs4", "pil", "base64", "io"],
|
81 |
max_steps=1,
|
82 |
verbosity_level=-1,
|
|
|
16 |
)
|
17 |
|
18 |
from src.insurance_assistants.complex_rag import RAG
|
19 |
+
from src.insurance_assistants.consts import PROMPT_PREFIX, PROMPT
|
20 |
|
21 |
# _ = load_dotenv(dotenv_path=find_dotenv())
|
22 |
rag_app = RAG()
|
|
|
45 |
chat_template = [
|
46 |
{
|
47 |
"role": "system",
|
48 |
+
"content": PROMPT
|
49 |
+
# """You find answers from the relevant documents. Answer only
|
50 |
+
# from these documents. If answer isn't available return 'Question cannot be answered based
|
51 |
+
# on the documents provided.' """
|
52 |
+
,
|
53 |
},
|
54 |
{
|
55 |
"role": "user",
|
|
|
78 |
insurance_agent = CodeAgent(
|
79 |
tools=[InsuranceInfoRetriever(), FinalAnswerTool()],
|
80 |
model=InferenceClientModel(bill_to="VitalNest", temperature=0.1,
|
81 |
+
# token=os.getenv("HF_TOKEN")
|
82 |
+
),
|
83 |
additional_authorized_imports=["os", "requests", "bs4", "pil", "base64", "io"],
|
84 |
max_steps=1,
|
85 |
verbosity_level=-1,
|
src/insurance_assistants/consts.py
CHANGED
@@ -10,11 +10,9 @@ Give detailed and extensive answers, only containing info in the pages you are g
|
|
10 |
You can answer using information contained in plots and figures if necessary.
|
11 |
Answer in the same language as the query.
|
12 |
|
13 |
-
Query: {query}
|
14 |
-
PDF pages:
|
15 |
"""
|
16 |
|
17 |
-
PRIMARY_HEADING = """#
|
18 |
#### This agent answers health insurance related questions from pre-ingested set \
|
19 |
of health insurance documents, search wikipedia, search the web \
|
20 |
and execute basic python code. \
|
|
|
10 |
You can answer using information contained in plots and figures if necessary.
|
11 |
Answer in the same language as the query.
|
12 |
|
|
|
|
|
13 |
"""
|
14 |
|
15 |
+
PRIMARY_HEADING = """# Multi-agent Health Insurance Advisor
|
16 |
#### This agent answers health insurance related questions from pre-ingested set \
|
17 |
of health insurance documents, search wikipedia, search the web \
|
18 |
and execute basic python code. \
|