File size: 18,126 Bytes
ceeabec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
import cv2
import numpy as np
import os
import pickle
import gzip
from datetime import datetime
from pathlib import Path
import decord
import argparse
import json
import time
from typing import Dict, Optional, Tuple, List, Union, Any
import tempfile


class HandExtractor:
    """
    A class for extracting hand regions from videos based on pose landmarks.
    """
    
    def __init__(self, output_size: Tuple[int, int] = (224, 224), 
                 scale_factor: float = 1.5, distance_threshold: float = 0.1):
        """
        Initialize the HandExtractor.
        
        Args:
            output_size: Size of the output hand frames (width, height)
            scale_factor: Scale factor for bounding box expansion
            distance_threshold: Distance threshold for hand-pose matching
        """
        self.output_size = output_size
        self.scale_factor = scale_factor
        self.distance_threshold = distance_threshold
    
    def resize_frame(self, frame: np.ndarray, frame_size: Tuple[int, int]) -> Optional[np.ndarray]:
        """Resize frame to specified size."""
        if frame is not None and frame.size > 0:
            return cv2.resize(frame, frame_size, interpolation=cv2.INTER_AREA)
        else:
            return None

    def crop_frame(self, image: np.ndarray, bounding_box: Tuple[int, int, int, int]) -> np.ndarray:
        """Crop frame using bounding box."""
        x, y, w, h = bounding_box
        cropped_frame = image[y:y + h, x:x + w]
        return cropped_frame

    def get_bounding_box(self, landmarks: List[List[float]], image_shape: Tuple[int, int, int], 
                        scale_factor: float = 1.2) -> Tuple[int, int, int, int]:
        """Get bounding box from landmarks."""
        ih, iw, _ = image_shape
        landmarks_px = np.array([(int(l[0] * iw), int(l[1] * ih)) for l in landmarks])
        center_x, center_y = np.mean(landmarks_px, axis=0, dtype=int)
        xb, yb, wb, hb = cv2.boundingRect(landmarks_px)
        box_size = max(wb, hb)
        half_size = box_size // 2
        x = center_x - half_size
        y = center_y - half_size
        w = box_size
        h = box_size
        
        w_padding = int((scale_factor - 1) * w / 2)
        h_padding = int((scale_factor - 1) * h / 2)
        x -= w_padding
        y -= h_padding
        w += 2 * w_padding
        h += 2 * h_padding    
        
        return x, y, w, h

    def adjust_bounding_box(self, bounding_box: Tuple[int, int, int, int], 
                           image_shape: Tuple[int, int, int]) -> Tuple[int, int, int, int]:
        """Adjust bounding box to fit within image boundaries."""
        x, y, w, h = bounding_box
        ih, iw, _ = image_shape

        # Adjust x-coordinate if the bounding box extends beyond the image's right edge
        if x + w > iw:
            x = iw - w
        
        # Adjust y-coordinate if the bounding box extends beyond the image's bottom edge
        if y + h > ih:
            y = ih - h
        
        # Ensure bounding box's x and y coordinates are not negative
        x = max(x, 0)
        y = max(y, 0)    

        return x, y, w, h

    def select_hands(self, pose_landmarks: List[List[float]], hand_landmarks: Optional[List[List[List[float]]]], 
                    image_shape: Tuple[int, int, int]) -> Tuple[Optional[List[List[float]]], Optional[List[List[float]]]]:
        """
        Select left and right hands from detected hand landmarks based on pose wrist positions.
        
        Args:
            pose_landmarks: Pose landmarks from MediaPipe
            hand_landmarks: Hand landmarks from MediaPipe
            image_shape: Shape of the image (height, width, channels)
            
        Returns:
            Tuple of (left_hand_landmarks, right_hand_landmarks)
        """
        if hand_landmarks is None:
            return None, None
        
        # Get wrist landmarks from pose (indices 15 and 16 for left and right wrists)
        left_wrist_from_pose = pose_landmarks[15]
        right_wrist_from_pose = pose_landmarks[16]
        
        # Get wrist landmarks from hand detections (index 0 is wrist in hand landmarks)
        wrist_from_hand = [hand_landmarks[i][0] for i in range(len(hand_landmarks))]
        
        # Match right hand
        right_hand_landmarks = None
        if right_wrist_from_pose is not None:
            minimum_distance = 100
            best_hand_idx = 0
            for i in range(len(hand_landmarks)):
                distance = np.linalg.norm(np.array(right_wrist_from_pose[0:2]) - np.array(wrist_from_hand[i][0:2]))
                if distance < minimum_distance:
                    minimum_distance = distance
                    best_hand_idx = i
            
            if minimum_distance < self.distance_threshold:
                right_hand_landmarks = hand_landmarks[best_hand_idx]
        
        # Match left hand
        left_hand_landmarks = None
        if left_wrist_from_pose is not None:
            minimum_distance = 100
            best_hand_idx = 0
            for i in range(len(hand_landmarks)):
                distance = np.linalg.norm(np.array(left_wrist_from_pose[0:2]) - np.array(wrist_from_hand[i][0:2]))
                if distance < minimum_distance:
                    minimum_distance = distance
                    best_hand_idx = i
            
            if minimum_distance < self.distance_threshold:
                left_hand_landmarks = hand_landmarks[best_hand_idx]
        
        return left_hand_landmarks, right_hand_landmarks

    def extract_hand_frames(self, video_input, landmarks_data: Dict[int, Any]) -> Tuple[List[np.ndarray], List[np.ndarray]]:
        """
        Extract hand frames from video based on landmarks.
        
        Args:
            video_input: Either a path to video file (str) or a decord.VideoReader object
            landmarks_data: Dictionary containing pose and hand landmarks for each frame
            
        Returns:
            Tuple of (left_hand_frames, right_hand_frames) as lists of numpy arrays
        """
        # Handle different input types
        if isinstance(video_input, str):
            video_path = Path(video_input)
            if not video_path.exists():
                raise FileNotFoundError(f"Video file not found: {video_input}")
            video = decord.VideoReader(str(video_path))
        # elif hasattr(video_input, '__len__') and hasattr(video_input, '__getitem__'):
        else:
            video = video_input
        # else:
        #     raise TypeError("video_input must be either a file path (str) or a VideoReader object")
        
        left_hand_frames = []
        right_hand_frames = []
        
        prev_left_frame = None
        prev_right_frame = None
        prev_landmarks = None
        
        for i in range(len(video)):
            # frame = video[i].asnumpy()
            frame = video[i]
            if hasattr(video, 'seek'):
                video.seek(0)
            frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
            
            # Get landmarks for this frame
            frame_landmarks = landmarks_data.get(i, None)
            
            # Handle missing landmarks
            if frame_landmarks is None:
                if prev_landmarks is not None:
                    frame_landmarks = prev_landmarks
                else:
                    # Use blank frames if no landmarks available
                    left_hand_frames.append(np.zeros((*self.output_size, 3), dtype=np.uint8))
                    right_hand_frames.append(np.zeros((*self.output_size, 3), dtype=np.uint8))
                    continue
            else:
                prev_landmarks = frame_landmarks
            
            # Check if pose landmarks exist
            if frame_landmarks.get('pose_landmarks') is None:
                # Use previous frames or blank frames
                if prev_left_frame is not None:
                    left_hand_frames.append(prev_left_frame)
                else:
                    left_hand_frames.append(np.zeros((*self.output_size, 3), dtype=np.uint8))
                
                if prev_right_frame is not None:
                    right_hand_frames.append(prev_right_frame)
                else:
                    right_hand_frames.append(np.zeros((*self.output_size, 3), dtype=np.uint8))
                continue
            
            # Select hands based on pose landmarks
            left_hand_landmarks, right_hand_landmarks = self.select_hands(
                frame_landmarks['pose_landmarks'][0], 
                frame_landmarks.get('hand_landmarks'),
                frame_rgb.shape
            )
            
            # Process left hand
            if left_hand_landmarks is not None:
                left_box = self.get_bounding_box(left_hand_landmarks, frame_rgb.shape, self.scale_factor)
                left_box = self.adjust_bounding_box(left_box, frame_rgb.shape)
                left_frame = self.crop_frame(frame_rgb, left_box)
                left_frame = self.resize_frame(left_frame, self.output_size)
                left_hand_frames.append(left_frame)
                prev_left_frame = left_frame
            elif prev_left_frame is not None:
                left_hand_frames.append(prev_left_frame)
            else:
                left_hand_frames.append(np.zeros((*self.output_size, 3), dtype=np.uint8))
            
            # Process right hand
            if right_hand_landmarks is not None:
                right_box = self.get_bounding_box(right_hand_landmarks, frame_rgb.shape, self.scale_factor)
                right_box = self.adjust_bounding_box(right_box, frame_rgb.shape)
                right_frame = self.crop_frame(frame_rgb, right_box)
                right_frame = self.resize_frame(right_frame, self.output_size)
                right_hand_frames.append(right_frame)
                prev_right_frame = right_frame
            elif prev_right_frame is not None:
                right_hand_frames.append(prev_right_frame)
            else:
                right_hand_frames.append(np.zeros((*self.output_size, 3), dtype=np.uint8))
        
        return left_hand_frames, right_hand_frames

    def extract_and_save_hand_videos(self, video_input, landmarks_data: Dict[int, Any], 
                                   output_dir: str, video_name: Optional[str] = None) -> Tuple[str, str]:
        """
        Extract hand frames and save as video files.
        
        Args:
            video_input: Either a path to video file (str) or a decord.VideoReader object
            landmarks_data: Dictionary containing pose and hand landmarks for each frame
            output_dir: Directory to save the hand videos
            video_name: Name for output videos (auto-generated if not provided)
            
        Returns:
            Tuple of (left_hand_video_path, right_hand_video_path)
        """
        # Handle video input and get FPS
        if isinstance(video_input, str):
            video_path = Path(video_input)
            if not video_path.exists():
                raise FileNotFoundError(f"Video file not found: {video_input}")
            video = decord.VideoReader(str(video_path))
            if video_name is None:
                video_name = video_path.stem
        # elif hasattr(video_input, '__len__') and hasattr(video_input, '__getitem__'):
        else:
            video = video_input
            if video_name is None:
                video_name = "video"
        # else:
        #     raise TypeError("video_input must be either a file path (str) or a VideoReader object")
        
        fps = video.get_avg_fps() if hasattr(video, 'get_avg_fps') else 30.0
        
        # Create output directory
        output_path = Path(output_dir)
        output_path.mkdir(parents=True, exist_ok=True)
        
        # Define output paths
        left_hand_path = output_path / f"{video_name}_hand1.mp4"
        right_hand_path = output_path / f"{video_name}_hand2.mp4"
        
        # Remove existing files
        if left_hand_path.exists():
            left_hand_path.unlink()
        if right_hand_path.exists():
            right_hand_path.unlink()
        
        # Create video writers
        fourcc = cv2.VideoWriter_fourcc(*'mp4v')
        left_writer = cv2.VideoWriter(str(left_hand_path), fourcc, fps, self.output_size)
        right_writer = cv2.VideoWriter(str(right_hand_path), fourcc, fps, self.output_size)
        
        try:
            # Extract hand frames
            left_frames, right_frames = self.extract_hand_frames(video, landmarks_data)
            
            # Write frames to video files
            for left_frame, right_frame in zip(left_frames, right_frames):
                left_writer.write(left_frame)
                right_writer.write(right_frame)
                
        finally:
            # Clean up
            left_writer.release()
            right_writer.release()
            del left_writer
            del right_writer
        
        return str(left_hand_path), str(right_hand_path)


# Convenience function for backward compatibility
def extract_hand_frames(video_input, landmarks_data: Dict[int, Any], 
                       output_size: Tuple[int, int] = (224, 224)) -> Tuple[List[np.ndarray], List[np.ndarray]]:
    """
    Convenience function to extract hand frames from video.
    
    Args:
        video_input: Either a path to video file (str) or a decord.VideoReader object
        landmarks_data: Dictionary containing pose and hand landmarks for each frame
        output_size: Size of the output hand frames (width, height)
        
    Returns:
        Tuple of (left_hand_frames, right_hand_frames) as lists of numpy arrays
    """
    extractor = HandExtractor(output_size=output_size)
    return extractor.extract_hand_frames(video_input, landmarks_data)


def video_holistic(video_file: str, hand_path: str, problem_file_path: str, pose_path: str):
    """
    Original function for backward compatibility with command-line usage.
    """
    try:
        video = decord.VideoReader(video_file)
        fps = video.get_avg_fps()

        video_name = Path(video_file).stem
        clip_hand1_path = Path(hand_path) / f"{video_name}_hand1.mp4"
        clip_hand2_path = Path(hand_path) / f"{video_name}_hand2.mp4"
        landmark_json_path = Path(pose_path) / f"{video_name}_pose.json"

        # Load landmarks
        with open(landmark_json_path, 'r') as rd:
            landmarks_data = json.load(rd)

        # Convert string keys to integers
        landmarks_data = {int(k): v for k, v in landmarks_data.items()}

        # Extract hand videos
        extractor = HandExtractor()
        extractor.extract_and_save_hand_videos(video, landmarks_data, hand_path, video_name)

    except Exception as e:
        print(f"Error processing {video_file}: {e}")
        with open(problem_file_path, "a") as p:
            p.write(video_file + "\n")


# Utility functions for batch processing
def load_file(filename: str):
    """Load a pickled and gzipped file."""
    with gzip.open(filename, "rb") as f:
        return pickle.load(f)


def is_string_in_file(file_path: str, target_string: str) -> bool:
    """Check if a string exists in a file."""
    try:
        with Path(file_path).open("r") as f:
            for line in f:
                if target_string in line:
                    return True
        return False
    except Exception as e:
        print(f"Error: {e}")
        return False


def main():
    """Main function for command-line usage."""
    parser = argparse.ArgumentParser()
    parser.add_argument('--index', type=int, required=True,
                        help='index of the sub_list to work with')
    parser.add_argument('--batch_size', type=int, required=True,
                        help='batch size')
    parser.add_argument('--time_limit', type=int, required=True,
                        help='time limit')
    parser.add_argument('--files_list', type=str, required=True,
                        help='files list')
    parser.add_argument('--problem_file_path', type=str, required=True,
                        help='problem file path')
    parser.add_argument('--pose_path', type=str, required=True,
                        help='pose path')
    parser.add_argument('--hand_path', type=str, required=True,
                        help='hand path')

    args = parser.parse_args()
    start_time = time.time()

    # Create directories if they do not exist
    Path(args.hand_path).mkdir(parents=True, exist_ok=True)
    
    # Load files list
    fixed_list = load_file(args.files_list)
    
    # Create problem file if it doesn't exist
    if not os.path.exists(args.problem_file_path):
        with open(args.problem_file_path, "w") as f:
            f.write("")
    
    # Process videos in batches
    video_batches = [fixed_list[i:i + args.batch_size] for i in range(0, len(fixed_list), args.batch_size)]
    
    for video_file in video_batches[args.index]:
        current_time = time.time()
        if current_time - start_time > args.time_limit:
            print("Time limit reached. Stopping execution.")
            break

        video_name = Path(video_file).stem
        clip_hand2_path = Path(args.hand_path) / f"{video_name}_hand2.mp4"
        
        if clip_hand2_path.exists():
            print(f"Skipping {video_file} - output already exists")
            continue
        elif is_string_in_file(args.problem_file_path, video_file):
            print(f"Skipping {video_file} - found in problem file")
            continue
        else:
            try:
                print(f"Processing {video_file}")
                video_holistic(video_file, args.hand_path, args.problem_file_path, args.pose_path)
                print(f"Successfully processed {video_file}")
            except Exception as e:
                print(f"Error processing {video_file}: {e}")
                with open(args.problem_file_path, "a") as p:
                    p.write(video_file + "\n")


if __name__ == "__main__":
    main()