Spaces:
Running
on
Zero
Running
on
Zero
File size: 16,462 Bytes
ceeabec |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 |
import mediapipe as mp
from mediapipe.tasks import python
from mediapipe.tasks.python import vision
import cv2
import numpy as np
import json
from pathlib import Path
import decord
from typing import Dict, Optional, Tuple, Any
class HolisticDetector:
"""
A class for detecting face, hand, and pose landmarks in videos using MediaPipe.
"""
def __init__(self, face_model_path: str, hand_model_path: str,
min_detection_confidence: float = 0.1,
min_hand_detection_confidence: float = 0.05,
max_faces: int = 6, max_hands: int = 6):
"""
Initialize the HolisticDetector with model paths and configuration.
Args:
face_model_path: Path to the face detection model
hand_model_path: Path to the hand detection model
min_detection_confidence: Minimum confidence for pose detection
min_hand_detection_confidence: Minimum confidence for hand detection
max_faces: Maximum number of faces to detect
max_hands: Maximum number of hands to detect
"""
self.face_model_path = face_model_path
self.hand_model_path = hand_model_path
self.min_detection_confidence = min_detection_confidence
self.min_hand_detection_confidence = min_hand_detection_confidence
self.max_faces = max_faces
self.max_hands = max_hands
self._initialize_detectors()
def _initialize_detectors(self):
"""Initialize the MediaPipe detectors."""
# Initialize face detector
base_options_face = python.BaseOptions(model_asset_path=self.face_model_path)
options_face = vision.FaceLandmarkerOptions(
base_options=base_options_face,
output_face_blendshapes=True,
output_facial_transformation_matrixes=True,
num_faces=self.max_faces
)
self.face_detector = vision.FaceLandmarker.create_from_options(options_face)
# Initialize hand detector
base_options_hand = python.BaseOptions(model_asset_path=self.hand_model_path)
options_hand = vision.HandLandmarkerOptions(
base_options=base_options_hand,
num_hands=self.max_hands,
min_hand_detection_confidence=self.min_hand_detection_confidence
)
self.hand_detector = vision.HandLandmarker.create_from_options(options_hand)
# Initialize holistic model for pose
self.mp_holistic = mp.solutions.holistic.Holistic(
min_detection_confidence=self.min_detection_confidence
)
def detect_frame_landmarks(self, image: np.ndarray) -> Tuple[Dict[str, int], Dict[str, Any]]:
"""
Detect landmarks in a single frame.
Args:
image: Input image as numpy array
Returns:
Tuple of (bounding_boxes_count, landmarks_data)
"""
results = self.mp_holistic.process(image)
mp_image = mp.Image(image_format=mp.ImageFormat.SRGB, data=image)
face_prediction = self.face_detector.detect(mp_image)
hand_prediction = self.hand_detector.detect(mp_image)
bounding_boxes = {}
landmarks_data = {}
# Process face landmarks
if face_prediction.face_landmarks:
bounding_boxes['#face'] = len(face_prediction.face_landmarks)
landmarks_data['face_landmarks'] = []
for face in face_prediction.face_landmarks:
landmarks_face = [[landmark.x, landmark.y, landmark.z] for landmark in face]
landmarks_data['face_landmarks'].append(landmarks_face)
else:
bounding_boxes['#face'] = 0
landmarks_data['face_landmarks'] = None
# Process hand landmarks
if hand_prediction.hand_landmarks:
bounding_boxes['#hands'] = len(hand_prediction.hand_landmarks)
landmarks_data['hand_landmarks'] = []
for hand in hand_prediction.hand_landmarks:
landmarks_hand = [[landmark.x, landmark.y, landmark.z] for landmark in hand]
landmarks_data['hand_landmarks'].append(landmarks_hand)
else:
bounding_boxes['#hands'] = 0
landmarks_data['hand_landmarks'] = None
# Process pose landmarks
if results.pose_landmarks:
bounding_boxes['#pose'] = 1
landmarks_data['pose_landmarks'] = []
pose_landmarks = [[landmark.x, landmark.y, landmark.z] for landmark in results.pose_landmarks.landmark]
landmarks_data['pose_landmarks'].append(pose_landmarks)
else:
bounding_boxes['#pose'] = 0
landmarks_data['pose_landmarks'] = None
return bounding_boxes, landmarks_data
def process_video(self, video_input, save_results: bool = False,
output_dir: Optional[str] = None, video_name: Optional[str] = None) -> Dict[int, Any]:
"""
Process a video and extract landmarks from all frames.
Args:
video_input: Either a path to video file (str) or a decord.VideoReader object
save_results: Whether to save results to files
output_dir: Directory to save results (required if save_results=True)
video_name: Name for output files (required if save_results=True and video_input is VideoReader)
Returns:
Dictionary containing landmarks for each frame
Raises:
FileNotFoundError: If video file doesn't exist
ValueError: If save_results=True but output_dir is None, or if video_name is None when needed
TypeError: If video_input is neither string nor VideoReader
"""
if save_results and output_dir is None:
raise ValueError("output_dir must be provided when save_results=True")
# Handle different input types
if isinstance(video_input, str):
# Input is a file path
video_path = Path(video_input)
if not video_path.exists():
raise FileNotFoundError(f"Video file not found: {video_input}")
try:
video = decord.VideoReader(str(video_path))
except Exception as e:
raise RuntimeError(f"Error loading video {video_input}: {e}")
file_name = video_path.stem
# elif hasattr(video_input, '__len__') and hasattr(video_input, '__getitem__'):
else:
# Input is a VideoReader object or similar
video = video_input
if save_results and video_name is None:
raise ValueError("video_name must be provided when save_results=True and video_input is a VideoReader object")
file_name = video_name or "video"
# else:
# raise TypeError("video_input must be either a file path (str) or a VideoReader object")
result_dict = {}
stats = {}
# Process each frame
for i in range(len(video)):
try:
# frame_rgb = video[i].asnumpy()
frame_rgb = video[i]
if hasattr(video, 'seek'):
video.seek(0)
bounding_boxes, landmarks = self.detect_frame_landmarks(frame_rgb)
result_dict[i] = landmarks
stats[i] = bounding_boxes
except Exception as e:
print(f"Error processing frame {i}: {e}")
result_dict[i] = None
stats[i] = {'#face': 0, '#hands': 0, '#pose': 0}
# Save results if requested
if save_results:
self._save_results(file_name, result_dict, stats, output_dir)
return result_dict
def process_video_frames(self, frames: list, save_results: bool = False,
output_dir: Optional[str] = None, video_name: str = "video") -> Dict[int, Any]:
"""
Process a list of frames and extract landmarks.
Args:
frames: List of frame images as numpy arrays
save_results: Whether to save results to files
output_dir: Directory to save results (required if save_results=True)
video_name: Name for output files
Returns:
Dictionary containing landmarks for each frame
"""
if save_results and output_dir is None:
raise ValueError("output_dir must be provided when save_results=True")
result_dict = {}
stats = {}
# Process each frame
for i, frame in enumerate(frames):
try:
bounding_boxes, landmarks = self.detect_frame_landmarks(frame)
result_dict[i] = landmarks
stats[i] = bounding_boxes
except Exception as e:
print(f"Error processing frame {i}: {e}")
result_dict[i] = None
stats[i] = {'#face': 0, '#hands': 0, '#pose': 0}
# Save results if requested
if save_results:
self._save_results(video_name, result_dict, stats, output_dir)
return result_dict
def _save_results(self, video_name: str, landmarks_data: Dict, stats_data: Dict, output_dir: str):
"""Save landmarks and stats to JSON files."""
output_path = Path(output_dir)
output_path.mkdir(parents=True, exist_ok=True)
# Save landmarks
landmarks_file = output_path / f"{video_name}_pose.json"
with open(landmarks_file, 'w') as f:
json.dump(landmarks_data, f)
# Save stats
stats_file = output_path / f"{video_name}_stats.json"
with open(stats_file, 'w') as f:
json.dump(stats_data, f)
def compute_video_stats(self, landmarks_data: Dict) -> Dict[str, Any]:
"""
Compute statistics from landmarks data.
Args:
landmarks_data: Dictionary containing landmarks for each frame
Returns:
Dictionary containing frame-by-frame stats and maximums
"""
stats = {}
max_counts = {'#face': 0, '#hands': 0, '#pose': 0}
for frame, landmarks in landmarks_data.items():
if landmarks is None:
presence = {'#face': 0, '#hands': 0, '#pose': 0}
else:
presence = {
'#face': len(landmarks.get('face_landmarks', [])) if landmarks.get('face_landmarks') else 0,
'#hands': len(landmarks.get('hand_landmarks', [])) if landmarks.get('hand_landmarks') else 0,
'#pose': len(landmarks.get('pose_landmarks', [])) if landmarks.get('pose_landmarks') else 0
}
stats[frame] = presence
# Update max counts
for key in max_counts:
max_counts[key] = max(max_counts[key], presence[key])
stats['max'] = max_counts
return stats
# Convenience function for backward compatibility and simple usage
def video_holistic(video_input, face_model_path: str, hand_model_path: str,
save_results: bool = False, output_dir: Optional[str] = None,
video_name: Optional[str] = None) -> Dict[int, Any]:
"""
Convenience function to process a video and extract holistic landmarks.
Args:
video_input: Either a path to video file (str) or a decord.VideoReader object
face_model_path: Path to the face detection model
hand_model_path: Path to the hand detection model
save_results: Whether to save results to files
output_dir: Directory to save results
video_name: Name for output files (required if save_results=True and video_input is VideoReader)
Returns:
Dictionary containing landmarks for each frame
"""
detector = HolisticDetector(face_model_path, hand_model_path)
return detector.process_video(video_input, save_results, output_dir, video_name)
# Utility functions for batch processing
def load_file(filename: str):
"""Load a pickled and gzipped file."""
import pickle
import gzip
with gzip.open(filename, "rb") as f:
return pickle.load(f)
def is_string_in_file(file_path: str, target_string: str) -> bool:
"""Check if a string exists in a file."""
try:
with Path(file_path).open("r") as f:
for line in f:
if target_string in line:
return True
return False
except Exception as e:
print(f"Error: {e}")
return False
def main():
"""Main function for command-line usage."""
import argparse
import time
import os
parser = argparse.ArgumentParser()
parser.add_argument('--index', type=int, required=True,
help='index of the sub_list to work with')
parser.add_argument('--batch_size', type=int, required=True,
help='batch size')
parser.add_argument('--pose_path', type=str, required=True,
help='path to where the pose data will be saved')
parser.add_argument('--stats_path', type=str, required=True,
help='path to where the stats data will be saved')
parser.add_argument('--time_limit', type=int, required=True,
help='time limit')
parser.add_argument('--files_list', type=str, required=True,
help='files list')
parser.add_argument('--problem_file_path', type=str, required=True,
help='problem file path')
parser.add_argument('--face_model_path', type=str, required=True,
help='face model path')
parser.add_argument('--hand_model_path', type=str, required=True,
help='hand model path')
args = parser.parse_args()
start_time = time.time()
# Initialize detector
detector = HolisticDetector(args.face_model_path, args.hand_model_path)
# Load the files list
fixed_list = load_file(args.files_list)
# Create folders if they do not exist
Path(args.pose_path).mkdir(parents=True, exist_ok=True)
Path(args.stats_path).mkdir(parents=True, exist_ok=True)
# Create problem file if it doesn't exist
if not os.path.exists(args.problem_file_path):
with open(args.problem_file_path, 'w') as f:
pass
# Process videos in batches
video_batches = [fixed_list[i:i + args.batch_size] for i in range(0, len(fixed_list), args.batch_size)]
for video_file in video_batches[args.index]:
current_time = time.time()
if current_time - start_time > args.time_limit:
print("Time limit reached. Stopping execution.")
break
# Check if output files already exist
video_name = Path(video_file).stem
landmark_json_path = Path(args.pose_path) / f"{video_name}_pose.json"
stats_json_path = Path(args.stats_path) / f"{video_name}_stats.json"
if landmark_json_path.exists() and stats_json_path.exists():
print(f"Skipping {video_file} - output files already exist")
continue
elif is_string_in_file(args.problem_file_path, video_file):
print(f"Skipping {video_file} - found in problem file")
continue
else:
try:
print(f"Processing {video_file}")
result_dict = detector.process_video(
video_file_path=video_file,
save_results=True,
output_dir=args.pose_path
)
# Also save stats separately for compatibility
stats = detector.compute_video_stats(result_dict)
with open(stats_json_path, 'w') as f:
json.dump(stats, f)
print(f"Successfully processed {video_file}")
except Exception as e:
print(f"Error processing {video_file}: {e}")
# Add to problem file
with open(args.problem_file_path, "a") as p:
p.write(video_file + "\n")
if __name__ == "__main__":
main() |