Spaces:
Running
on
Zero
Running
on
Zero
File size: 17,269 Bytes
ceeabec |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 |
import torch
import numpy as np
import csv
import os
from tqdm import tqdm
import argparse
from pathlib import Path
from typing import Dict, List, Optional, Tuple, Union, Any
from examples.shubert.models.shubert import SHubertModel, SHubertConfig
from transformers import ByT5Tokenizer, ByT5ForConditionalGeneration
class SHubertProcessor:
"""
A class for processing multi-modal embeddings through SHubert model.
"""
def __init__(self, checkpoint_path: str, device: Optional[str] = None):
"""
Initialize the SHubertProcessor.
Args:
checkpoint_path: Path to the SHubert model checkpoint
device: Device to use ('cuda' or 'cpu'). Auto-detected if None
"""
self.checkpoint_path = checkpoint_path
self.device = device if device else torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Load the model
self.model = self._load_model()
print(f"SHubertProcessor initialized on device: {self.device}")
def _load_model(self) -> SHubertModel:
"""Load the SHubert model from checkpoint."""
# Initialize configuration
cfg = SHubertConfig()
# Initialize the model
model = SHubertModel(cfg)
# Load the checkpoint
checkpoint = torch.load(self.checkpoint_path, map_location=self.device)
# Extract state dict
if 'model' in checkpoint:
state_dict = checkpoint['model']
else:
state_dict = checkpoint
# Load the state dictionary into the model
model.load_state_dict(state_dict, strict=False)
model.eval()
model.to(self.device)
return model
def process_embeddings(self, face_embeddings: np.ndarray,
left_hand_embeddings: np.ndarray,
right_hand_embeddings: np.ndarray,
pose_embeddings: np.ndarray) -> np.ndarray:
"""
Process multi-modal embeddings through SHubert model.
Args:
face_embeddings: Face embeddings array of shape (num_frames, embedding_dim)
left_hand_embeddings: Left hand embeddings array of shape (num_frames, embedding_dim)
right_hand_embeddings: Right hand embeddings array of shape (num_frames, embedding_dim)
pose_embeddings: Pose embeddings array of shape (num_frames, pose_dim)
Returns:
Numpy array of SHubert features with shape (num_layers, num_frames, feature_dim)
"""
# Convert to tensors and move to device
face = torch.from_numpy(face_embeddings).float().to(self.device)
left_hand = torch.from_numpy(left_hand_embeddings).float().to(self.device)
right_hand = torch.from_numpy(right_hand_embeddings).float().to(self.device)
body_posture = torch.from_numpy(pose_embeddings).float().to(self.device)
length = face.shape[0]
# Prepare input in the format expected by SHubert
source = [{
"face": face,
"left_hand": left_hand,
"right_hand": right_hand,
"body_posture": body_posture,
# Add dummy labels to match the expected input format
"label_face": torch.zeros((length, 1)).to(self.device),
"label_left_hand": torch.zeros((length, 1)).to(self.device),
"label_right_hand": torch.zeros((length, 1)).to(self.device),
"label_body_posture": torch.zeros((length, 1)).to(self.device)
}]
# Extract features
with torch.no_grad():
result = self.model.extract_features(source, padding_mask=None, kmeans_labels=None, mask=False)
# Extract layer outputs
layer_outputs = []
for layer in result['layer_results']:
# layer_output has shape [T, B, D]
# Since batch size B is 1, we can squeeze it
layer_output = layer[-1]
layer_output = layer_output.squeeze(1) # Shape: [T, D]
layer_outputs.append(layer_output.cpu().numpy()) # Convert to NumPy array
# Stack the outputs from all layers to get an array of shape [L, T, D]
features = np.stack(layer_outputs, axis=0) # Shape: [L, T, D]
return features
def process_embeddings_from_files(self, face_path: str, left_hand_path: str,
right_hand_path: str, pose_path: str) -> np.ndarray:
"""
Process embeddings loaded from files.
Args:
face_path: Path to face embeddings .npy file
left_hand_path: Path to left hand embeddings .npy file
right_hand_path: Path to right hand embeddings .npy file
pose_path: Path to pose embeddings .npy file
Returns:
Numpy array of SHubert features with shape (num_layers, num_frames, feature_dim)
"""
# Load numpy arrays
face_embeddings = np.load(face_path)
left_hand_embeddings = np.load(left_hand_path)
right_hand_embeddings = np.load(right_hand_path)
pose_embeddings = np.load(pose_path)
return self.process_embeddings(face_embeddings, left_hand_embeddings,
right_hand_embeddings, pose_embeddings)
def process_and_save_embeddings(self, face_embeddings: np.ndarray,
left_hand_embeddings: np.ndarray,
right_hand_embeddings: np.ndarray,
pose_embeddings: np.ndarray,
output_path: str) -> str:
"""
Process embeddings and save to file.
Args:
face_embeddings: Face embeddings array
left_hand_embeddings: Left hand embeddings array
right_hand_embeddings: Right hand embeddings array
pose_embeddings: Pose embeddings array
output_path: Path to save the output file
Returns:
Path to the saved file
"""
# Process embeddings
features = self.process_embeddings(face_embeddings, left_hand_embeddings,
right_hand_embeddings, pose_embeddings)
# Create output directory if it doesn't exist
output_dir = Path(output_path).parent
output_dir.mkdir(parents=True, exist_ok=True)
# Save features
np.save(output_path, features)
return str(output_path)
def process_from_files_and_save(self, face_path: str, left_hand_path: str,
right_hand_path: str, pose_path: str,
output_path: str) -> str:
"""
Process embeddings from files and save results.
Args:
face_path: Path to face embeddings .npy file
left_hand_path: Path to left hand embeddings .npy file
right_hand_path: Path to right hand embeddings .npy file
pose_path: Path to pose embeddings .npy file
output_path: Path to save the output file
Returns:
Path to the saved file
"""
# Process embeddings
features = self.process_embeddings_from_files(face_path, left_hand_path,
right_hand_path, pose_path)
# Create output directory if it doesn't exist
output_dir = Path(output_path).parent
output_dir.mkdir(parents=True, exist_ok=True)
# Save features
np.save(output_path, features)
return str(output_path)
class SHuBERTTextGenerator:
"""
A class that combines SHuBERT feature extraction with BYT5 text generation.
"""
def __init__(self, shubert_checkpoint: str, byt5_model_name: str = "google/byt5-base",
device: Optional[str] = None):
"""
Initialize with SHuBERT and BYT5 models.
Args:
shubert_checkpoint: Path to SHuBERT model checkpoint
byt5_model_name: Name of BYT5 model (default: "google/byt5-base")
device: Device to use ('cuda' or 'cpu')
"""
self.device = device if device else torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Initialize SHuBERT processor
self.shubert_processor = SHubertProcessor(shubert_checkpoint, self.device)
# Initialize BYT5 model
self.tokenizer = ByT5Tokenizer.from_pretrained(byt5_model_name)
self.model = ByT5ForConditionalGeneration.from_pretrained(byt5_model_name).to(self.device)
def generate_text(self, face_embeddings: np.ndarray,
left_hand_embeddings: np.ndarray,
right_hand_embeddings: np.ndarray,
pose_embeddings: np.ndarray,
max_length: int = 1024,
num_beams: int = 5) -> str:
"""
Generate text from multi-modal embeddings.
Args:
face_embeddings: Face embeddings array
left_hand_embeddings: Left hand embeddings array
right_hand_embeddings: Right hand embeddings array
pose_embeddings: Pose embeddings array
max_length: Maximum length of generated text
num_beams: Number of beams for beam search
Returns:
Generated text string
"""
# Get SHuBERT features
features = self.shubert_processor.process_embeddings(
face_embeddings, left_hand_embeddings, right_hand_embeddings, pose_embeddings)
# Select features from specific layer (default: last layer)
features = features[-1] # Shape: [T, D]
# Convert to tensor and add batch dimension
features = torch.from_numpy(features).float().unsqueeze(0).to(self.device)
# Generate text
generated_ids = self.model.generate(
inputs_embeds=features,
max_length=max_length,
num_beams=num_beams,
early_stopping=True
)
# Decode generated tokens to text
return self.tokenizer.decode(generated_ids[0], skip_special_tokens=True)
def generate_text_from_features(face_embeddings: np.ndarray,
left_hand_embeddings: np.ndarray,
right_hand_embeddings: np.ndarray,
pose_embeddings: np.ndarray,
shubert_checkpoint: str,
byt5_model_name: str = "google/byt5-base",
max_length: int = 1024,
num_beams: int = 5) -> str:
"""
Convenience function to generate text from features.
"""
generator = SHuBERTTextGenerator(shubert_checkpoint, byt5_model_name)
return generator.generate_text(
face_embeddings, left_hand_embeddings, right_hand_embeddings, pose_embeddings,
max_length=max_length, num_beams=num_beams
)
# Convenience functions for backward compatibility
def process_shubert_embeddings(face_embeddings: np.ndarray,
left_hand_embeddings: np.ndarray,
right_hand_embeddings: np.ndarray,
pose_embeddings: np.ndarray,
checkpoint_path: str) -> np.ndarray:
"""
Convenience function to process embeddings through SHubert.
Args:
face_embeddings: Face embeddings array
left_hand_embeddings: Left hand embeddings array
right_hand_embeddings: Right hand embeddings array
pose_embeddings: Pose embeddings array
checkpoint_path: Path to the SHubert model checkpoint
Returns:
Numpy array of SHubert features
"""
processor = SHubertProcessor(checkpoint_path)
return processor.process_embeddings(face_embeddings, left_hand_embeddings,
right_hand_embeddings, pose_embeddings)
def process_sample(model: SHubertModel, face_path: str, left_hand_path: str,
right_hand_path: str, body_posture_path: str) -> np.ndarray:
"""
Original function for backward compatibility with command-line usage.
"""
# Load numpy arrays
face_np = np.load(face_path)
left_hand_np = np.load(left_hand_path)
right_hand_np = np.load(right_hand_path)
body_posture_np = np.load(body_posture_path)
face = torch.from_numpy(face_np).float().cuda()
left_hand = torch.from_numpy(left_hand_np).float().cuda()
right_hand = torch.from_numpy(right_hand_np).float().cuda()
body_posture = torch.from_numpy(body_posture_np).float().cuda()
length = face.shape[0]
# Prepare input
source = [{
"face": face,
"left_hand": left_hand,
"right_hand": right_hand,
"body_posture": body_posture,
# Add dummy labels to match the expected input format
"label_face": torch.zeros((length, 1)).cuda(),
"label_left_hand": torch.zeros((length, 1)).cuda(),
"label_right_hand": torch.zeros((length, 1)).cuda(),
"label_body_posture": torch.zeros((length, 1)).cuda()
}]
# Extract features
with torch.no_grad():
result = model.extract_features(source, padding_mask=None, kmeans_labels=None, mask=False)
# Extract layer outputs
layer_outputs = []
for layer in result['layer_results']:
# layer_output has shape [T, B, D]
# Since batch size B is 1, we can squeeze it
layer_output = layer[-1]
layer_output = layer_output.squeeze(1) # Shape: [T, D]
layer_outputs.append(layer_output.cpu().numpy()) # Convert to NumPy array
# Stack the outputs from all layers to get an array of shape [L, T, D]
features = np.stack(layer_outputs, axis=0) # Shape: [L, T, D]
return features
def load_model(checkpoint_path: str) -> SHubertModel:
"""
Original function for backward compatibility with command-line usage.
"""
cfg = SHubertConfig()
# Initialize the model
model = SHubertModel(cfg)
# Load the checkpoint
checkpoint = torch.load(checkpoint_path)
# If the checkpoint is saved with a 'model' key
if 'model' in checkpoint:
state_dict = checkpoint['model']
else:
state_dict = checkpoint
# Load the state dictionary into the model
model.load_state_dict(state_dict, strict=False)
model.eval()
model.cuda() # Move to GPU if available
return model
def main(csv_list: List[List[str]], checkpoint_path: str, output_dir: str, index: int):
"""
Original main function for backward compatibility with command-line usage.
"""
model = load_model(checkpoint_path)
os.makedirs(output_dir, exist_ok=True)
for row in csv_list:
cues_list = row[0].split('\t')
face_path, left_hand_path, right_hand_path, body_posture_path = cues_list[0], cues_list[1], cues_list[2], cues_list[3]
output_filename = f"{os.path.basename(face_path).rsplit('.', 1)[0].rsplit('_', 1)[0]}.npy"
output_path = os.path.join(output_dir, output_filename)
# check if the output file already exists
if os.path.exists(output_path):
print(f"Skipping {output_path} as it already exists")
continue
# Process the sample
features = process_sample(model, face_path, left_hand_path, right_hand_path, body_posture_path)
np.save(output_path, features)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--index', type=int, required=True,
help='index of the sub_list to work with')
parser.add_argument('--csv_path', type=str, required=True,
help='path to the CSV file')
parser.add_argument('--checkpoint_path', type=str, required=True,
help='path to the checkpoint file')
parser.add_argument('--output_dir', type=str, required=True,
help='directory to save output files')
parser.add_argument('--batch_size', type=int, required=True,
help='batch size for processing')
args = parser.parse_args()
index = args.index
csv_path = args.csv_path
checkpoint_path = args.checkpoint_path
output_dir = args.output_dir
batch_size = int(args.batch_size)
# make output dir
os.makedirs(output_dir, exist_ok=True)
# Load CSV data
fixed_list = []
with open(csv_path, 'r') as csvfile:
reader = csv.reader(csvfile)
for row in reader:
fixed_list.append(row)
# Process in batches
video_batches = [fixed_list[i:i + batch_size] for i in range(0, len(fixed_list), batch_size)]
csv_list = video_batches[index]
main(csv_list, checkpoint_path, output_dir, index) |