ShesterG's picture
Add application file
ceeabec
import os
import copy
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import random
import warnings
from transformers import (
ByT5Tokenizer,
Seq2SeqTrainingArguments,
Seq2SeqTrainer,
)
from transformers.models.t5 import T5Config
from transformers.models.t5.modeling_t5 import *
from transformers.modeling_outputs import BaseModelOutputWithPastAndCrossAttentions, Seq2SeqLMOutput
from transformers.utils.model_parallel_utils import assert_device_map, get_device_map
from torch.nn import CrossEntropyLoss
from collections.abc import Mapping
from dataclasses import dataclass
from random import randint
from typing import Any, Callable, Dict, List, NewType, Optional, Tuple, Union
from transformers.utils import PaddingStrategy
from shubert import SignHubertModel, SignHubertConfig
class SignHubertAdapter(nn.Module):
def __init__(self, channels):
super().__init__()
# Adjust intermediate_dim based on number of channels
intermediate_dim_shubert = 1024
self.signhubert = SignHubertModel(SignHubertConfig(
channels=channels,
intermediate_dim=intermediate_dim_shubert
))
def forward(self, x):
features = self.signhubert.extract_features(x, padding_mask=None, kmeans_labels=None, mask=False)
# Extract layer outputs
layer_outputs = []
for layer in features['layer_results']:
layer_output = layer[-1] # Shape: [B, T, D]
layer_outputs.append(layer_output)
# Stack the outputs from all layers
stacked_features = torch.stack(layer_outputs, dim=1) # Shape: [B, L, T, D]
return stacked_features
class LinearAdapter(nn.Module):
def __init__(self, face_dim, hand_dim, pose_dim, representations_dim, out_dim, extraction_layer, channels):
super().__init__()
self.signhubert_adapter = SignHubertAdapter(channels)
self.layer_weights = nn.Parameter(torch.ones(12)) # Learnable weights for each layer
self.final_layer = nn.Linear(representations_dim, out_dim)
self.extraction_layer = extraction_layer
def forward(self, face_features, left_hand_features, right_hand_features, body_posture_features):
dtype = torch.float32
face_features = face_features.to(dtype=dtype)
left_hand_features = left_hand_features.to(dtype=dtype)
right_hand_features = right_hand_features.to(dtype=dtype)
body_posture_features = body_posture_features.to(dtype=dtype)
batch_size, seq_len = face_features.shape[:2]
dummy_labels = torch.zeros((seq_len, 1), dtype=dtype, device=face_features.device)
source = []
for i in range(batch_size):
source.append({
"face": face_features[i],
"left_hand": left_hand_features[i],
"right_hand": right_hand_features[i],
"body_posture": body_posture_features[i],
"label_face": dummy_labels,
"label_left_hand": dummy_labels,
"label_right_hand": dummy_labels,
"label_body_posture": dummy_labels
})
# Get representations from SignHubert
representations_features = self.signhubert_adapter(source) # [T, L, B, D]
representations_features = representations_features.permute(2, 1, 0, 3) # [B, L, T, D]
if self.extraction_layer == 0:
normalized_weights = self.layer_weights
weighted_representations = representations_features * normalized_weights.view(1, -1, 1, 1)
representations_for_downstream_task = torch.sum(weighted_representations, dim=1)
else:
representations_for_downstream_task = representations_features[:, self.extraction_layer-1, :, :]
final_output = self.final_layer(representations_for_downstream_task)
return final_output
class SignLanguageByT5Config(T5Config):
def __init__(
self,
representations_dim=768,
adapter="linear",
finetune_signhubert=False,
face_dim=384,
hand_dim=384,
pose_dim=14,
extraction_layer=0, # use last layer
channels="face,left_hand,right_hand,body_posture",
**kwargs
):
self.representations_dim = representations_dim
self.adapter = adapter
self.finetune_signhubert = finetune_signhubert
self.face_dim = face_dim
self.hand_dim = hand_dim
self.pose_dim = pose_dim
self.extraction_layer = extraction_layer
self.channels = channels
super().__init__(**kwargs)
class SignLanguageByT5Encoder(T5PreTrainedModel):
def __init__(self, config):
super().__init__(config)
# Initialize the adapter based on the configuration
if config.adapter == "linear":
self.adapter = LinearAdapter(
config.face_dim,
config.hand_dim,
config.pose_dim,
config.representations_dim,
config.d_model,
config.extraction_layer,
config.channels
)
else:
raise NotImplementedError("Adapter type not implemented.")
self.is_decoder = config.is_decoder
# Define the encoder blocks
self.block = nn.ModuleList(
[T5Block(config, has_relative_attention_bias=bool(i == 0)) for i in range(config.num_layers)]
)
self.final_layer_norm = T5LayerNorm(config.d_model, eps=config.layer_norm_epsilon)
self.dropout = nn.Dropout(config.dropout_rate)
# Initialize weights and apply final processing
self.post_init()
# Model parallel settings
self.model_parallel = False
self.device_map = None
self.gradient_checkpointing = False
def parallelize(self, device_map=None):
warnings.warn(
"`T5Stack.parallelize` is deprecated and will be removed in v5 of Transformers, you should load your model"
" with `device_map='balanced'` in the call to `from_pretrained`. You can also provide your own"
" `device_map` but it needs to be a dictionary module_name to device, so for instance {'block.0': 0,"
" 'block.1': 1, ...}",
FutureWarning,
)
# Check validity of device_map
self.device_map = (
get_device_map(len(self.block), range(torch.cuda.device_count())) if device_map is None else device_map
)
assert_device_map(self.device_map, len(self.block))
self.model_parallel = True
self.first_device = "cpu" if "cpu" in self.device_map.keys() else "cuda:" + str(min(self.device_map.keys()))
self.last_device = "cuda:" + str(max(self.device_map.keys()))
# Load onto devices
for k, v in self.device_map.items():
for layer in v:
cuda_device = "cuda:" + str(k)
self.block[layer] = self.block[layer].to(cuda_device)
# Set embed_tokens to first layer
self.embed_tokens = self.embed_tokens.to(self.first_device)
# Set final layer norm to last device
self.final_layer_norm = self.final_layer_norm.to(self.last_device)
def deparallelize(self):
warnings.warn(
"Like `parallelize`, `deparallelize` is deprecated and will be removed in v5 of Transformers.",
FutureWarning,
)
self.model_parallel = False
self.device_map = None
self.first_device = "cpu"
self.last_device = "cpu"
for i in range(len(self.block)):
self.block[i] = self.block[i].to("cpu")
self.embed_tokens = self.embed_tokens.to("cpu")
self.final_layer_norm = self.final_layer_norm.to("cpu")
torch.cuda.empty_cache()
def get_input_embeddings(self):
return self.embed_tokens
def set_input_embeddings(self, new_embeddings):
self.embed_tokens = new_embeddings
def forward(
self,
face_features=None,
left_hand_features=None,
right_hand_features=None,
pose_features=None,
attention_mask=None,
head_mask=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
cross_attn_head_mask=None,
past_key_values=None,
use_cache=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
# Set default values if not provided
use_cache = use_cache if use_cache is not None else self.config.use_cache
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# Use the adapter to convert representation features into embeddings
inputs_embeds = self.adapter(face_features, left_hand_features, right_hand_features, pose_features)
input_shape = inputs_embeds.shape[:2]
batch_size, seq_length = input_shape
mask_seq_length = seq_length
if attention_mask is None:
attention_mask = torch.ones(batch_size, mask_seq_length, device=inputs_embeds.device)
# Initialize past_key_values if not provided
if past_key_values is None:
past_key_values = [None] * len(self.block)
# Extend attention mask
extended_attention_mask = self.get_extended_attention_mask(attention_mask, input_shape)
# Prepare head mask if needed
head_mask = self.get_head_mask(head_mask, self.config.num_layers)
present_key_value_states = () if use_cache else None
all_hidden_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
hidden_states = self.dropout(inputs_embeds)
# Iterate over each encoder block
for i, (layer_module, past_key_value) in enumerate(zip(self.block, past_key_values)):
layer_head_mask = head_mask[i]
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
layer_outputs = layer_module(
hidden_states,
attention_mask=extended_attention_mask,
position_bias=None,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
encoder_decoder_position_bias=None,
layer_head_mask=layer_head_mask,
cross_attn_layer_head_mask=cross_attn_head_mask,
past_key_value=past_key_value,
use_cache=use_cache,
output_attentions=output_attentions,
)
hidden_states = layer_outputs[0]
if use_cache:
present_key_value_states = present_key_value_states + (layer_outputs[1],)
if output_attentions:
all_attentions = all_attentions + (layer_outputs[2],)
hidden_states = self.final_layer_norm(hidden_states)
hidden_states = self.dropout(hidden_states)
# Add last hidden state
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(
v
for v in [hidden_states, present_key_value_states, all_hidden_states, all_attentions]
if v is not None
)
return BaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
past_key_values=present_key_value_states,
hidden_states=all_hidden_states,
attentions=all_attentions,
cross_attentions=None,
)
class SignLanguageByT5ForConditionalGeneration(T5PreTrainedModel):
_keys_to_ignore_on_load_unexpected = [
"decoder.block.0.layer.1.EncDecAttention.relative_attention_bias.weight",
]
_tied_weights_keys = ["decoder.embed_tokens.weight", "lm_head.weight"]
def __init__(self, config: T5Config):
super().__init__(config)
self.model_dim = config.d_model
# Initialize the decoder embedding
self.decoder_emb = nn.Embedding(config.vocab_size, config.d_model)
# Initialize the encoder with the custom SignLanguageByT5Encoder
encoder_config = copy.deepcopy(config)
encoder_config.is_decoder = False
encoder_config.use_cache = False
encoder_config.is_encoder_decoder = False
self.encoder = SignLanguageByT5Encoder(encoder_config)
# Initialize the decoder
decoder_config = copy.deepcopy(config)
decoder_config.is_decoder = True
decoder_config.is_encoder_decoder = False
decoder_config.num_layers = config.num_decoder_layers
self.decoder = T5Stack(decoder_config, self.decoder_emb)
# Initialize the language modeling head
self.lm_head = nn.Linear(config.d_model, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
# Model parallel settings
self.model_parallel = False
self.device_map = None
def parallelize(self, device_map=None):
warnings.warn(
"`T5ForConditionalGeneration.parallelize` is deprecated and will be removed in v5 of Transformers, you"
" should load your model with `device_map='balanced'` in the call to `from_pretrained`. You can also"
" provide your own `device_map` but it needs to be a dictionary module_name to device, so for instance"
" {'encoder.block.0': 0, 'encoder.block.1': 1, ...}",
FutureWarning,
)
self.device_map = (
get_device_map(len(self.encoder.block), range(torch.cuda.device_count()))
if device_map is None
else device_map
)
assert_device_map(self.device_map, len(self.encoder.block))
self.encoder.parallelize(self.device_map)
self.decoder.parallelize(self.device_map)
self.lm_head = self.lm_head.to(self.decoder.first_device)
self.model_parallel = True
def deparallelize(self):
warnings.warn(
"Like `parallelize`, `deparallelize` is deprecated and will be removed in v5 of Transformers.",
FutureWarning,
)
self.encoder.deparallelize()
self.decoder.deparallelize()
self.encoder = self.encoder.to("cpu")
self.decoder = self.decoder.to("cpu")
self.lm_head = self.lm_head.to("cpu")
self.model_parallel = False
self.device_map = None
torch.cuda.empty_cache()
def get_input_embeddings(self):
return self.decoder_emb
def set_input_embeddings(self, new_embeddings):
self.shared = new_embeddings
self.encoder.set_input_embeddings(new_embeddings)
self.decoder.set_input_embeddings(new_embeddings)
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def get_output_embeddings(self):
return self.lm_head
def get_encoder(self):
return self.encoder
def get_decoder(self):
return self.decoder
def prepare_inputs_for_generation(
self,
input_ids,
past_key_values=None,
attention_mask=None,
head_mask=None,
decoder_head_mask=None,
decoder_attention_mask=None,
cross_attn_head_mask=None,
use_cache=None,
encoder_outputs=None,
**kwargs,
):
# cut decoder_input_ids if past is used
if past_key_values is not None:
input_ids = input_ids[:, -1:]
return {
"decoder_input_ids": input_ids,
"past_key_values": past_key_values,
"encoder_outputs": encoder_outputs,
"attention_mask": attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"decoder_attention_mask": decoder_attention_mask,
"cross_attn_head_mask": cross_attn_head_mask,
"use_cache": use_cache,
}
def prepare_decoder_input_ids_from_labels(self, labels: torch.Tensor):
return self._shift_right(labels)
def _reorder_cache(self, past_key_values, beam_idx):
# if decoder past is not included in output
# speedy decoding is disabled and no need to reorder
if past_key_values is None:
logger.warning("You might want to consider setting `use_cache=True` to speed up decoding")
return past_key_values
reordered_decoder_past = ()
for layer_past_states in past_key_values:
# get the correct batch idx from layer past batch dim
# batch dim of `past` is at 2nd position
reordered_layer_past_states = ()
for layer_past_state in layer_past_states:
# need to set correct `past` for each of the four key / value states
reordered_layer_past_states = reordered_layer_past_states + (
layer_past_state.index_select(0, beam_idx.to(layer_past_state.device)),
)
if reordered_layer_past_states[0].shape != layer_past_states[0].shape:
raise ValueError(
f"reordered_layer_past_states[0] shape {reordered_layer_past_states[0].shape} and layer_past_states[0] shape {layer_past_states[0].shape} mismatched"
)
if len(reordered_layer_past_states) != len(layer_past_states):
raise ValueError(
f"length of reordered_layer_past_states {len(reordered_layer_past_states)} and length of layer_past_states {len(layer_past_states)} mismatched"
)
reordered_decoder_past = reordered_decoder_past + (reordered_layer_past_states,)
return reordered_decoder_past
def forward(
self,
face_features=None,
left_hand_features=None,
right_hand_features=None,
pose_features=None,
attention_mask=None,
decoder_input_ids=None,
decoder_attention_mask=None,
head_mask=None,
decoder_head_mask=None,
cross_attn_head_mask=None,
encoder_outputs=None,
past_key_values=None,
decoder_inputs_embeds=None,
labels=None, # Keep this for training compatibility
use_cache=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
# Set default values if not provided
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# Prepare head masks if needed
if head_mask is not None and decoder_head_mask is None:
if self.config.num_layers == self.config.num_decoder_layers:
warnings.warn(__HEAD_MASK_WARNING_MSG, FutureWarning)
decoder_head_mask = head_mask
# Encode if encoder outputs are not provided
if encoder_outputs is None:
encoder_outputs = self.encoder(
face_features=face_features,
left_hand_features=left_hand_features,
right_hand_features=right_hand_features,
pose_features=pose_features,
attention_mask=attention_mask,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
elif return_dict and not isinstance(encoder_outputs, BaseModelOutputWithPastAndCrossAttentions):
encoder_outputs = BaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=encoder_outputs[0],
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
)
hidden_states = encoder_outputs[0]
# Prepare decoder inputs
if labels is not None and decoder_input_ids is None and decoder_inputs_embeds is None:
decoder_input_ids = self._shift_right(labels)
# Decode
decoder_outputs = self.decoder(
input_ids=decoder_input_ids,
attention_mask=decoder_attention_mask,
inputs_embeds=decoder_inputs_embeds,
past_key_values=past_key_values,
encoder_hidden_states=hidden_states,
encoder_attention_mask=attention_mask,
head_mask=decoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = decoder_outputs[0]
# Scale sequence output if embeddings are tied
if self.config.tie_word_embeddings:
sequence_output = sequence_output * (self.model_dim ** -0.5)
# Compute language modeling logits
lm_logits = self.lm_head(sequence_output)
loss = None
if labels is not None:
loss_fct = CrossEntropyLoss(ignore_index=-100)
labels = labels.to(lm_logits.device)
loss = loss_fct(lm_logits.view(-1, lm_logits.size(-1)), labels.view(-1))
if not return_dict:
output = (lm_logits,) + decoder_outputs[1:] + encoder_outputs
return ((loss,) + output) if loss is not None else output
return Seq2SeqLMOutput(
loss=loss,
logits=lm_logits,
past_key_values=decoder_outputs.past_key_values,
decoder_hidden_states=decoder_outputs.hidden_states,
decoder_attentions=decoder_outputs.attentions,
cross_attentions=decoder_outputs.cross_attentions,
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
encoder_hidden_states=encoder_outputs.hidden_states,
encoder_attentions=encoder_outputs.attentions,
)
def generate(
self,
face_features=None,
left_hand_features=None,
right_hand_features=None,
pose_features=None,
attention_mask=None,
**kwargs
):
"""
Generate method to handle sign language features and generate output sequences.
"""
# Compute encoder outputs using sign language features
encoder_outputs = self.encoder(
face_features=face_features,
left_hand_features=left_hand_features,
right_hand_features=right_hand_features,
pose_features=pose_features,
attention_mask=attention_mask,
return_dict=True
)
# Pass encoder outputs to the decoder
kwargs["encoder_outputs"] = encoder_outputs
# Generate sequences using the parent class's generate method
return super().generate(
attention_mask=attention_mask,
**kwargs
)
@dataclass
class SignLanguageT5Collator:
model: Optional[Any] = None
padding: Union[bool, str, PaddingStrategy] = True
max_length: Optional[int] = None
pad_to_multiple_of: Optional[int] = None
label_pad_token_id: int = -100
return_tensors: str = "pt"
def __call__(self, features, return_tensors=None):
if return_tensors is None:
return_tensors = self.return_tensors
face_embeds = [feature["face_features"] for feature in features]
left_hand_embeds = [feature["left_hand_features"] for feature in features]
right_hand_embeds = [feature["right_hand_features"] for feature in features]
pose_embeds = [feature["pose_features"] for feature in features]
# Padding
max_len = max([emb.shape[0] for emb in face_embeds])
def pad_embeds(embeds):
padded_embeds = []
for emb in embeds:
if emb.dim() == 3: # For 3D tensors (pose features)
pad_len = max_len - emb.shape[1] # padding the second dimension (T)
emb_pad = torch.nn.functional.pad(emb, (0, 0, 0, pad_len, 0, 0), value=0)
else: # For 2D tensors (face, hand features)
pad_len = max_len - emb.shape[0]
emb_pad = torch.nn.functional.pad(emb, (0, 0, 0, pad_len), value=0)
padded_embeds.append(emb_pad)
return padded_embeds
padded_face_embeds = pad_embeds(face_embeds)
padded_left_hand_embeds = pad_embeds(left_hand_embeds)
padded_right_hand_embeds = pad_embeds(right_hand_embeds)
padded_pose_embeds = pad_embeds(pose_embeds)
batch = {}
batch["face_features"] = torch.stack(padded_face_embeds, dim=0)
batch["left_hand_features"] = torch.stack(padded_left_hand_embeds, dim=0)
batch["right_hand_features"] = torch.stack(padded_right_hand_embeds, dim=0)
batch["pose_features"] = torch.stack(padded_pose_embeds, dim=0)
# For inference, we don't need decoder_input_ids - the model.generate() will handle this
# Remove the decoder_input_ids requirement
return batch
class TranslationFeatures(torch.utils.data.Dataset):
def __init__(self, face_embeddings, left_hand_embeddings, right_hand_embeddings, body_posture_embeddings):
self.face_embeddings = face_embeddings
self.left_hand_embeddings = left_hand_embeddings
self.right_hand_embeddings = right_hand_embeddings
self.body_posture_embeddings = body_posture_embeddings
def __len__(self):
return 1
def __getitem__(self, idx):
return {
"face_features": torch.tensor(self.face_embeddings),
"left_hand_features": torch.tensor(self.left_hand_embeddings),
"right_hand_features": torch.tensor(self.right_hand_embeddings),
"pose_features": torch.tensor(self.body_posture_embeddings),
}
def generate_text_from_features(
face_embeddings: np.ndarray,
left_hand_embeddings: np.ndarray,
right_hand_embeddings: np.ndarray,
body_posture_embeddings: np.ndarray,
model_config: str,
model_checkpoint: str,
tokenizer_checkpoint: str,
output_dir: str,
generation_max_length: int = 2048,
generation_num_beams: int = 5,
):
"""
Direct inference function that generates text from sign language features.
"""
# Load model and tokenizer
config = SignLanguageByT5Config.from_pretrained(model_config)
model = SignLanguageByT5ForConditionalGeneration.from_pretrained(
model_checkpoint,
# config=config,
cache_dir=os.path.join(output_dir, "cache"),
)
tokenizer = ByT5Tokenizer.from_pretrained(tokenizer_checkpoint)
# Move model to appropriate device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
model.eval()
# Convert inputs to tensors and move to device
face_tensor = torch.tensor(face_embeddings, dtype=torch.float32).unsqueeze(0).to(device)
left_hand_tensor = torch.tensor(left_hand_embeddings, dtype=torch.float32).unsqueeze(0).to(device)
right_hand_tensor = torch.tensor(right_hand_embeddings, dtype=torch.float32).unsqueeze(0).to(device)
pose_tensor = torch.tensor(body_posture_embeddings, dtype=torch.float32).unsqueeze(0).to(device)
# Generate text
with torch.no_grad():
generated_ids = model.generate(
face_features=face_tensor,
left_hand_features=left_hand_tensor,
right_hand_features=right_hand_tensor,
pose_features=pose_tensor,
max_length=generation_max_length,
num_beams=generation_num_beams,
early_stopping=True,
pad_token_id=tokenizer.pad_token_id,
eos_token_id=tokenizer.eos_token_id,
)
# Decode generated text
generated_text = tokenizer.decode(generated_ids[0], skip_special_tokens=True)
return generated_text
def test(
face_embeddings: np.ndarray,
left_hand_embeddings: np.ndarray,
right_hand_embeddings: np.ndarray,
body_posture_embeddings: np.ndarray,
model_config: str,
model_checkpoint: str,
tokenizer_checkpoint: str,
output_dir: str,
):
"""
Test function for inference - generates text from sign language features.
This is a simpler wrapper around the direct inference function.
"""
return generate_text_from_features(
face_embeddings=face_embeddings,
left_hand_embeddings=left_hand_embeddings,
right_hand_embeddings=right_hand_embeddings,
body_posture_embeddings=body_posture_embeddings,
model_config=model_config,
model_checkpoint=model_checkpoint,
tokenizer_checkpoint=tokenizer_checkpoint,
output_dir=output_dir,
)