Spaces:
Sleeping
Sleeping
File size: 1,951 Bytes
4c54cfc 49a58a2 4c54cfc 077fb0c aa6486e 077fb0c aa6486e 077fb0c aa6486e 077fb0c aa6486e 077fb0c aa6486e 077fb0c aa6486e 149d670 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 |
---
title: ResNet50 ImageNet Classifier
emoji: πΌοΈ
colorFrom: blue
colorTo: red
sdk: gradio
sdk_version: 5.9.1
app_file: app.py
pinned: false
---
# ResNet50 trained on ImageNet-1K
This is a ResNet50 model trained on ImageNet-1K dataset with 1000 classes. The model can classify a wide variety of images into 1000 different categories.
## Model Details
- Architecture: ResNet50
- Dataset: ImageNet-1K
- Classes: 1000
- Input Size: 224x224 pixels
- Model File: `resnet50_imagenet1k.pth`
- Training Repository: [Link](https://github.com/pradeep6kumar/ImageNet_v4)
## Quick Start
1. Clone the repository:
```bash
git clone https://huggingface.co/spaces/Shilpaj/ImageNet
cd ImageNet
```
2. Download the model:
```bash
# Option 1: Using wget
wget https://huggingface.co/spaces/Shilpaj/ImageNet/blob/main/resnet50_imagenet1k.pth
# Option 2: Manual download
Download from: https://huggingface.co/spaces/Shilpaj/ImageNet/tree/main/resnet50_imagenet1k.pth
```
3. Install requirements:
```bash
pip install -r requirements.txt
```
4. Run the demo:
```bash
python app.py
```
## Usage in Your Project
```python
from inference import ImageNetClassifier
# Initialize the classifier
classifier = ImageNetClassifier('resnet50_imagenet1k.pth')
# Classify an image
image_path = 'path/to/your/image.jpg'
prediction, confidence = classifier.predict(image_path)
print(f"Prediction: {prediction}")
print(f"Confidence: {confidence:.2f}%")
```
## Example Images
The `assets/examples` directory contains sample images for testing:
- Bird
- Car
- Cat
- Dog
- Frog
- Horse
- Plane
- Ship
- Truck
## Repository Structure
```
.
βββ app.py # Gradio web interface
βββ inference.py # Model inference code
βββ requirements.txt # Python dependencies
βββ assets/
βββ examples/ # Example images for testing
```
## License
MIT
## Acknowledgments
- ImageNet Dataset
- PyTorch Team
- HuggingFace Datasets
|