Spaces:
Sleeping
Sleeping
File size: 8,930 Bytes
077fb0c f8ecba6 de50636 f8ecba6 077fb0c ebbea61 f8ecba6 ebbea61 de50636 ebbea61 de50636 ebbea61 de50636 ebbea61 de50636 ebbea61 de50636 077fb0c de50636 077fb0c de50636 63e2fc6 de50636 077fb0c f8ecba6 ebbea61 f8ecba6 b67331d ebbea61 b67331d ebbea61 5177d9a ebbea61 5177d9a ebbea61 5177d9a f8ecba6 077fb0c b67331d f8ecba6 b67331d 35e684f b67331d 077fb0c b67331d 671ad7d aa6486e 671ad7d b67331d aa6486e b67331d aa6486e b67331d f8ecba6 b67331d f8ecba6 b67331d 671ad7d b67331d f8ecba6 671ad7d 73329bc aea42cc 73329bc aea42cc 73329bc aea42cc 73329bc aea42cc 73329bc b67331d aea42cc 73329bc aea42cc 73329bc aea42cc 73329bc aea42cc 73329bc aea42cc b67331d ebbea61 b67331d 671ad7d aea42cc ebbea61 8bf4957 ebbea61 b67331d f72fe80 671ad7d 35e684f b67331d 077fb0c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 |
#!/usr/bin/env python
"""
Application for ResNet50 trained on ImageNet-1K.
"""
# Standard Library Imports
import gradio as gr
# Third Party Imports
import torch
from torchvision import models
# Local Imports
from inference import inference
def load_model(model_path: str):
"""
Load the model.
"""
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print(f"Using device: {device}")
# Initialize a fresh model without pretrained weights
model = models.resnet50(weights=None)
model = model.to(device)
# Load custom weights
state_dict = torch.load(model_path, map_location=device)
# Debug: Print original state dict keys
print("\nOriginal state dict keys:", list(state_dict['model_state_dict'].keys())[:5])
# Remove the 'model.' prefix from state dict keys
new_state_dict = {}
for key, value in state_dict['model_state_dict'].items():
new_key = key.replace('model.', '')
new_state_dict[new_key] = value
# Debug: Print modified state dict keys
print("Modified state dict keys:", list(new_state_dict.keys())[:5])
print("Model state dict keys:", list(model.state_dict().keys())[:5])
# Load the modified state dict
try:
model.load_state_dict(new_state_dict)
print("Successfully loaded model weights")
except Exception as e:
print(f"Error loading state dict: {str(e)}")
raise e
model.eval()
return model
def load_classes():
"""
Load the ImageNet classes
"""
weights = models.ResNet50_Weights.IMAGENET1K_V1
classes = weights.meta["categories"]
print(f"Loaded {len(classes)} classes")
return classes
def inference_wrapper(image, alpha, top_k, target_layer):
"""
Wrapper function for inference with error handling
"""
try:
if image is None:
return {"Error": 1.0}, None
results = inference(
image,
alpha,
top_k,
target_layer,
model=model,
classes=classes
)
if results is None:
return {"Error": 1.0}, None
return results
except RuntimeError as e:
error_msg = str(e)
print(f"Error in inference: {error_msg}")
if "out of memory" in error_msg.lower():
return {"GPU Memory Error - Please try again": 1.0}, None
return {"Runtime Error: " + error_msg: 1.0}, None
except Exception as e:
error_msg = str(e)
print(f"Error in inference: {error_msg}")
return {"Error: " + error_msg: 1.0}, None
def main():
"""
Main function for the application.
"""
global model, classes
try:
print(f"Gradio version: {gr.__version__}")
# Load the model at startup
model = load_model("resnet50_imagenet1k.pth")
classes = load_classes()
with gr.Blocks() as demo:
gr.Markdown(
"""
# ResNet50 trained on ImageNet-1K
A large-scale image classification dataset with 1.2 million training images across 1,000 object categories.
"""
)
with gr.Tab("Predictions & GradCAM"):
gr.Markdown(
"""
View model predictions and visualize where the model is looking using GradCAM.
## Steps to use:
1. Upload an image or select one from the examples below
2. Adjust the sliders (optional):
- Activation Map Transparency: Controls the blend between original image and activation map
- Number of Top Predictions: How many top class predictions to show
- Target Layer Number: Which network layer to visualize (deeper layers show higher-level features)
3. Click "Generate GradCAM" to run the model
4. View the results:
- Left: Original uploaded image
- Right: Model predictions and GradCAM visualization showing where the model focused
"""
)
# Define inputs
with gr.Row():
img_input = gr.Image(
label="Input Image",
type="numpy",
height=224,
width=224
)
with gr.Column():
label_output = gr.Label(label="Predictions")
gradcam_output = gr.Image(
label="GradCAM Output",
height=224,
width=224
)
with gr.Row():
alpha_slider = gr.Slider(
minimum=0,
maximum=1,
value=0.5,
step=0.1,
label="Activation Map Transparency"
)
top_k_slider = gr.Slider(
minimum=1,
maximum=10,
value=3,
step=1,
label="Number of Top Predictions"
)
target_layer_slider = gr.Slider(
minimum=1,
maximum=6,
value=4,
step=1,
label="Target Layer Number"
)
gradcam_button = gr.Button("Generate GradCAM")
# Set up the click event
gradcam_button.click(
fn=inference_wrapper,
inputs=[
img_input,
alpha_slider,
top_k_slider,
target_layer_slider
],
outputs=[
label_output,
gradcam_output
]
)
# Examples section for Gradio 5.x
examples = [
[
"assets/examples/cat.jpg",
0.5,
3,
4
],
[
"assets/examples/frog.jpg",
0.5,
3,
4
],
[
"assets/examples/bird.jpg",
0.5,
3,
4
],
[
"assets/examples/car.jpg",
0.5,
3,
4
],
[
"assets/examples/truck.jpg",
0.5,
3,
4
],
[
"assets/examples/horse.jpg",
0.5,
3,
4
],
[
"assets/examples/plane.jpg",
0.5,
3,
4
],
[
"assets/examples/ship.png",
0.5,
3,
4
]
]
gr.Examples(
examples=examples,
inputs=[
img_input,
alpha_slider,
top_k_slider,
target_layer_slider
],
outputs=[
label_output,
gradcam_output
],
fn=inference_wrapper,
cache_examples=False, # Disable caching to prevent memory issues
label="Click on any example to run GradCAM"
)
# Queue configuration
demo.queue(max_size=1) # Only allow one job at a time
# Launch with minimal memory usage
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=True
)
except Exception as e:
print(f"Error during startup: {str(e)}")
if torch.cuda.is_available():
torch.cuda.empty_cache()
if __name__ == "__main__":
main()
|