--- title: ResNet50 ImageNet Classifier emoji: 🖼️ colorFrom: blue colorTo: red sdk: gradio sdk_version: 5.9.1 app_file: app.py pinned: false --- # ResNet50 trained on ImageNet-1K This is a ResNet50 model trained on ImageNet-1K dataset with 1000 classes. The model can classify a wide variety of images into 1000 different categories. ## Model Details - Architecture: ResNet50 - Dataset: ImageNet-1K - Classes: 1000 - Input Size: 224x224 pixels - Model File: `resnet50_imagenet1k.pth` - Training Repository: [Link](https://github.com/pradeep6kumar/ImageNet_v4) ## Quick Start 1. Clone the repository: ```bash git clone https://huggingface.co/spaces/Shilpaj/ImageNet cd ImageNet ``` 2. Download the model: ```bash # Option 1: Using wget wget https://huggingface.co/spaces/Shilpaj/ImageNet/blob/main/resnet50_imagenet1k.pth # Option 2: Manual download Download from: https://huggingface.co/spaces/Shilpaj/ImageNet/tree/main/resnet50_imagenet1k.pth ``` 3. Install requirements: ```bash pip install -r requirements.txt ``` 4. Run the demo: ```bash python app.py ``` ## Usage in Your Project ```python from inference import ImageNetClassifier # Initialize the classifier classifier = ImageNetClassifier('resnet50_imagenet1k.pth') # Classify an image image_path = 'path/to/your/image.jpg' prediction, confidence = classifier.predict(image_path) print(f"Prediction: {prediction}") print(f"Confidence: {confidence:.2f}%") ``` ## Example Images The `assets/examples` directory contains sample images for testing: - Bird - Car - Cat - Dog - Frog - Horse - Plane - Ship - Truck ## Repository Structure ``` . ├── app.py # Gradio web interface ├── inference.py # Model inference code ├── requirements.txt # Python dependencies └── assets/ └── examples/ # Example images for testing ``` ## License MIT ## Acknowledgments - ImageNet Dataset - PyTorch Team - HuggingFace Datasets