File size: 6,032 Bytes
0c94512
 
 
 
 
 
 
 
921561a
0c94512
 
 
 
37bc9d5
 
 
 
 
0c94512
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
100d65e
 
 
 
 
 
 
 
 
0c94512
 
 
 
 
972725f
921561a
0c94512
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
921561a
 
0c94512
37bc9d5
 
0c94512
 
 
f1387d1
 
921561a
 
0c94512
 
 
921561a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
import torch
import torch.nn.functional as F
import gradio as gr
import tiktoken
from dataclasses import dataclass
import torch.nn as nn
import math
import inspect
import spaces

# Configuration class (same as in training)
@dataclass
class GPTConfig:
    block_size: int = 1024
    vocab_size: int = 50257
    n_layer: int = 12
    n_head: int = 12
    n_embd: int = 768

# Model architecture classes (copied from training notebook)
class CausalSelfAttention(nn.Module):
    def __init__(self, config):
        super().__init__()
        assert config.n_embd % config.n_head == 0
        self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd)
        self.c_proj = nn.Linear(config.n_embd, config.n_embd)
        self.c_proj.NANGPT_SCALE_INIT = 1
        self.n_head = config.n_head
        self.n_embd = config.n_embd
        self.register_buffer("bias", torch.tril(torch.ones(config.block_size, config.block_size)).view(1, 1, config.block_size, config.block_size))

    def forward(self, x):
        B, T, C = x.size()
        qkv = self.c_attn(x)
        q, k, v = qkv.split(self.n_embd, dim=2)
        k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
        q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
        v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
        y = F.scaled_dot_product_attention(q, k, v, is_causal=True)
        y = y.transpose(1, 2).contiguous().view(B, T, C)
        y = self.c_proj(y)
        return y

class MLP(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd)
        self.gelu = nn.GELU(approximate='tanh')
        self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd)
        self.c_proj.NANOGPT_SCALE_INIT = 1

    def forward(self, x):
        x = self.c_fc(x)
        x = self.gelu(x)
        x = self.c_proj(x)
        return x

class Block(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.ln_1 = nn.LayerNorm(config.n_embd)
        self.attn = CausalSelfAttention(config)
        self.ln_2 = nn.LayerNorm(config.n_embd)
        self.mlp = MLP(config)

    def forward(self, x):
        x = x + self.attn(self.ln_1(x))
        x = x + self.mlp(self.ln_2(x))
        return x

class GPT(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.config = config
        self.gradient_checkpointing = True

        self.transformer = nn.ModuleDict(dict(
            wte = nn.Embedding(config.vocab_size, config.n_embd),
            wpe = nn.Embedding(config.block_size, config.n_embd),
            h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]),
            ln_f = nn.LayerNorm(config.n_embd),
        ))
        self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
        self.transformer.wte.weight = self.lm_head.weight
        self.apply(self._init_weights)

    def _init_weights(self, module):
        if isinstance(module, nn.Linear):
            std = 0.02
            if hasattr(module, 'NANGPT_SCALE_INIT'):
                std *= (2 * self.config.n_layer) ** -0.5
            torch.nn.init.normal_(module.weight, mean=0.0, std=std)
            if module.bias is not None:
                torch.nn.init.zeros_(module.bias)
        elif isinstance(module, nn.Embedding):
            torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)

    def forward(self, idx, targets=None):
        B, T = idx.size()
        assert T <= self.config.block_size, f"Cannot forward sequence of length {T}, block size is only {self.config.block_size}"
        
        pos = torch.arange(0, T, dtype=torch.long, device=idx.device)
        pos_emb = self.transformer.wpe(pos)
        tok_emb = self.transformer.wte(idx)
        x = tok_emb + pos_emb

        for block in self.transformer.h:
            x = block(x)

        x = self.transformer.ln_f(x)
        logits = self.lm_head(x)

        return logits, None if targets is None else F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1))

# Initialize model and load weights
def load_model():
    device = 'cuda' if torch.cuda.is_available() else 'cpu'
    model = GPT(GPTConfig())
    
    # Load the state dict with weights_only=True and remove the _orig_mod prefix
    state_dict = torch.load('nano_gpt_model.pt', map_location=device, weights_only=True)
    new_state_dict = {}
    for key in state_dict.keys():
        new_key = key.replace('_orig_mod.', '')
        new_state_dict[new_key] = state_dict[key]
    
    model.load_state_dict(new_state_dict)
    model.to(device)
    model.eval()
    return model, device

# Text generation function
@spaces.GPU(enable_queue=True)
def generate_text(prompt, num_tokens, temperature=0.8):
    enc = tiktoken.get_encoding('gpt2')
    x = torch.tensor([enc.encode(prompt)], dtype=torch.long, device=device)

    with torch.no_grad():
        while x.size(1) < num_tokens:
            with torch.autocast(device_type=device, dtype=torch.bfloat16):
                logits = model(x)[0]
            logits = logits[:, -1, :] / temperature
            probs = F.softmax(logits, dim=-1)
            next_token = torch.multinomial(probs, num_samples=1)
            x = torch.cat([x, next_token], dim=1)

    decoded = enc.decode(x[0].tolist())
    return decoded

# Load the model globally
model, device = load_model()

# Create the Gradio interface
demo = gr.Interface(
    fn=generate_text,
    inputs=[
        gr.Textbox(label="Enter your prompt", value="Thou shalt"),
        gr.Slider(minimum=1, maximum=1024, value=100, step=1, label="Number of tokens to generate"),
        gr.Slider(minimum=0.1, maximum=2.0, value=0.8, step=0.1, label="Temperature (higher = more random)")
    ],
    outputs=gr.Textbox(label="Generated Text"),
    title="GPT Text Generator",
    description="Generate Shakespeare-style text using a trained GPT model",
    allow_flagging="never",
    cache_examples=True
)

if __name__ == "__main__":
    demo.launch()