import torch import torch.nn.functional as F import gradio as gr import tiktoken from dataclasses import dataclass import torch.nn as nn import math import inspect import spaces # Configuration class (same as in training) @dataclass class GPTConfig: block_size: int = 1024 vocab_size: int = 50257 n_layer: int = 12 n_head: int = 12 n_embd: int = 768 # Model architecture classes (copied from training notebook) class CausalSelfAttention(nn.Module): def __init__(self, config): super().__init__() assert config.n_embd % config.n_head == 0 self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd) self.c_proj = nn.Linear(config.n_embd, config.n_embd) self.c_proj.NANGPT_SCALE_INIT = 1 self.n_head = config.n_head self.n_embd = config.n_embd self.register_buffer("bias", torch.tril(torch.ones(config.block_size, config.block_size)).view(1, 1, config.block_size, config.block_size)) def forward(self, x): B, T, C = x.size() qkv = self.c_attn(x) q, k, v = qkv.split(self.n_embd, dim=2) k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) y = F.scaled_dot_product_attention(q, k, v, is_causal=True) y = y.transpose(1, 2).contiguous().view(B, T, C) y = self.c_proj(y) return y class MLP(nn.Module): def __init__(self, config): super().__init__() self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd) self.gelu = nn.GELU(approximate='tanh') self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd) self.c_proj.NANOGPT_SCALE_INIT = 1 def forward(self, x): x = self.c_fc(x) x = self.gelu(x) x = self.c_proj(x) return x class Block(nn.Module): def __init__(self, config): super().__init__() self.ln_1 = nn.LayerNorm(config.n_embd) self.attn = CausalSelfAttention(config) self.ln_2 = nn.LayerNorm(config.n_embd) self.mlp = MLP(config) def forward(self, x): x = x + self.attn(self.ln_1(x)) x = x + self.mlp(self.ln_2(x)) return x class GPT(nn.Module): def __init__(self, config): super().__init__() self.config = config self.gradient_checkpointing = True self.transformer = nn.ModuleDict(dict( wte = nn.Embedding(config.vocab_size, config.n_embd), wpe = nn.Embedding(config.block_size, config.n_embd), h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]), ln_f = nn.LayerNorm(config.n_embd), )) self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False) self.transformer.wte.weight = self.lm_head.weight self.apply(self._init_weights) def _init_weights(self, module): if isinstance(module, nn.Linear): std = 0.02 if hasattr(module, 'NANGPT_SCALE_INIT'): std *= (2 * self.config.n_layer) ** -0.5 torch.nn.init.normal_(module.weight, mean=0.0, std=std) if module.bias is not None: torch.nn.init.zeros_(module.bias) elif isinstance(module, nn.Embedding): torch.nn.init.normal_(module.weight, mean=0.0, std=0.02) def forward(self, idx, targets=None): B, T = idx.size() assert T <= self.config.block_size, f"Cannot forward sequence of length {T}, block size is only {self.config.block_size}" pos = torch.arange(0, T, dtype=torch.long, device=idx.device) pos_emb = self.transformer.wpe(pos) tok_emb = self.transformer.wte(idx) x = tok_emb + pos_emb for block in self.transformer.h: x = block(x) x = self.transformer.ln_f(x) logits = self.lm_head(x) return logits, None if targets is None else F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1)) # Initialize model and load weights def load_model(): device = 'cuda' if torch.cuda.is_available() else 'cpu' model = GPT(GPTConfig()) # Load the state dict with weights_only=True and remove the _orig_mod prefix state_dict = torch.load('nano_gpt_model.pt', map_location=device, weights_only=True) new_state_dict = {} for key in state_dict.keys(): new_key = key.replace('_orig_mod.', '') new_state_dict[new_key] = state_dict[key] model.load_state_dict(new_state_dict) model.to(device) model.eval() return model, device # Text generation function @spaces.GPU(enable_queue=True) def generate_text(prompt, num_tokens, temperature=0.8): enc = tiktoken.get_encoding('gpt2') x = torch.tensor([enc.encode(prompt)], dtype=torch.long, device=device) with torch.no_grad(): while x.size(1) < num_tokens: with torch.autocast(device_type=device, dtype=torch.bfloat16): logits = model(x)[0] logits = logits[:, -1, :] / temperature probs = F.softmax(logits, dim=-1) next_token = torch.multinomial(probs, num_samples=1) x = torch.cat([x, next_token], dim=1) decoded = enc.decode(x[0].tolist()) return decoded # Load the model globally model, device = load_model() # Create the Gradio interface demo = gr.Interface( fn=generate_text, inputs=[ gr.Textbox(label="Enter your prompt", value="Thou shalt"), gr.Slider(minimum=1, maximum=1024, value=100, step=1, label="Number of tokens to generate"), gr.Slider(minimum=0.1, maximum=2.0, value=0.8, step=0.1, label="Temperature (higher = more random)") ], outputs=gr.Textbox(label="Generated Text"), title="GPT Text Generator", description="Generate Shakespeare-style text using a trained GPT model", allow_flagging="never", cache_examples=True ) if __name__ == "__main__": demo.launch()