File size: 11,057 Bytes
74fa5e8
 
 
 
 
 
179bc9a
74fa5e8
 
 
179bc9a
74fa5e8
 
 
 
179bc9a
74fa5e8
00c204f
 
74fa5e8
179bc9a
 
74fa5e8
179bc9a
 
 
 
 
 
74fa5e8
179bc9a
 
 
 
 
74fa5e8
 
179bc9a
74fa5e8
179bc9a
 
 
 
 
 
 
74fa5e8
 
 
 
179bc9a
74fa5e8
179bc9a
74fa5e8
 
179bc9a
74fa5e8
179bc9a
 
 
 
 
74fa5e8
179bc9a
74fa5e8
 
179bc9a
 
74fa5e8
179bc9a
74fa5e8
179bc9a
 
74fa5e8
 
179bc9a
 
74fa5e8
 
179bc9a
 
 
 
 
74fa5e8
179bc9a
 
 
 
 
 
 
 
74fa5e8
 
179bc9a
 
 
74fa5e8
 
179bc9a
 
74fa5e8
179bc9a
 
74fa5e8
179bc9a
 
74fa5e8
 
179bc9a
 
 
 
 
74fa5e8
 
179bc9a
74fa5e8
 
179bc9a
 
 
74fa5e8
 
179bc9a
74fa5e8
179bc9a
74fa5e8
179bc9a
74fa5e8
179bc9a
 
 
 
74fa5e8
179bc9a
 
 
74fa5e8
179bc9a
74fa5e8
179bc9a
 
 
 
 
 
 
00c204f
 
179bc9a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
74fa5e8
 
179bc9a
74fa5e8
 
 
 
 
 
 
179bc9a
00c204f
 
179bc9a
74fa5e8
179bc9a
74fa5e8
 
179bc9a
 
 
 
 
74fa5e8
 
 
 
 
 
 
 
 
 
 
179bc9a
 
74fa5e8
 
 
 
 
 
 
 
 
179bc9a
74fa5e8
179bc9a
74fa5e8
 
 
 
179bc9a
 
74fa5e8
 
 
 
 
 
 
 
179bc9a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
74fa5e8
179bc9a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
#!/usr/bin/env python3
"""
Gradio Application for Stable Diffusion
Author: Shilpaj Bhalerao
Date: Feb 26, 2025
"""
import gc
import os
import torch
import gradio as gr
# import spaces
from tqdm.auto import tqdm
from PIL import Image
from utils import (
    load_models, clear_gpu_memory, set_timesteps, latents_to_pil, 
    vignette_loss, get_concept_embedding, image_grid
)
# Remove this import to avoid the cached_download error
# from diffusers import StableDiffusionPipeline


def generate_latents(prompt, seed, num_inference_steps, guidance_scale, vignette_loss_scale, concept, concept_strength, height, width):
    """
    Function to generate latents from the UNet
    :param seed_number: Seed
    :param prompt: Text prompt
    :param concept: Concept to influence generation (optional)
    :param concept_strength: How strongly to apply the concept (0.0-1.0)
    :return: Latents of the UNet. This will be passed to the VAE to generate the image
    """
    global art_concepts

    # Batch size
    batch_size = 1

    # Set the seed
    generator = torch.manual_seed(seed)

    # Prep text
    text_input = tokenizer([prompt], padding="max_length", max_length=tokenizer.model_max_length, truncation=True, return_tensors="pt")
    with torch.no_grad():
        text_embeddings = text_encoder(text_input.input_ids.to(device))[0]

    # Get the concept embedding
    concept_embedding = art_concepts[concept]

    # Apply concept embedding influence if provided
    if concept_embedding is not None and concept_strength > 0:
        # Fix the dimension mismatch by adding a batch dimension to concept_embedding if needed
        if len(concept_embedding.shape) == 2 and len(text_embeddings.shape) == 3:
            # Add batch dimension to concept_embedding to match text_embeddings
            concept_embedding = concept_embedding.unsqueeze(0)

        # Create weighted blend between original text embedding and concept
        if text_embeddings.shape == concept_embedding.shape:
            # Interpolate between text embeddings and concept
            text_embeddings = (1 - concept_strength) * text_embeddings + concept_strength * concept_embedding
            print(f"Successfully applied concept with strength {concept_strength}")
        else:
            print(f"Warning: Shapes still incompatible after adjustment. Concept: {concept_embedding.shape}, Text: {text_embeddings.shape}")

    # And the uncond. input as before:
    max_length = text_input.input_ids.shape[-1]
    uncond_input = tokenizer(
        [""] * batch_size, padding="max_length", max_length=max_length, return_tensors="pt"
    )
    with torch.no_grad():
        uncond_embeddings = text_encoder(uncond_input.input_ids.to(device))[0]
    text_embeddings = torch.cat([uncond_embeddings, text_embeddings])

    # Prep Scheduler
    set_timesteps(scheduler, num_inference_steps)

    # Prep latents
    latents = torch.randn(
    (batch_size, unet.in_channels, height // 8, width // 8),
    generator=generator,
    )
    latents = latents.to(device)
    latents = latents * scheduler.init_noise_sigma

    # Loop
    for i, t in tqdm(enumerate(scheduler.timesteps), total=len(scheduler.timesteps)):
        # expand the latents if we are doing classifier-free guidance to avoid doing two forward passes.
        latent_model_input = torch.cat([latents] * 2)
        sigma = scheduler.sigmas[i]
        latent_model_input = scheduler.scale_model_input(latent_model_input, t)

        # predict the noise residual
        with torch.no_grad():
            noise_pred = unet(latent_model_input, t, encoder_hidden_states=text_embeddings)["sample"]

        # perform CFG
        noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
        noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)

        #### ADDITIONAL GUIDANCE ###
        if i%5 == 0:
            # Requires grad on the latents
            latents = latents.detach().requires_grad_()

            # Get the predicted x0:
            latents_x0 = latents - sigma * noise_pred
            # latents_x0 = scheduler.step(noise_pred, t, latents).pred_original_sample

            # Decode to image space
            denoised_images = vae.decode((1 / 0.18215) * latents_x0).sample / 2 + 0.5 # range (0, 1)

            # Calculate loss
            loss = vignette_loss(denoised_images) * vignette_loss_scale

            # Occasionally print it out
            if i%10==0:
                print(i, 'loss:', loss.item())

            # Get gradient
            cond_grad = torch.autograd.grad(loss, latents)[0]

            # Modify the latents based on this gradient
            latents = latents.detach() - cond_grad * sigma**2

        # Now step with scheduler
        latents = scheduler.step(noise_pred, t, latents).prev_sample
    return latents


def generate_image(prompt, seed=42, num_inference_steps=30, guidance_scale=7.5,
                   vignette_loss_scale=0.0, concept="none", concept_strength=0.5, height=512, width=512):
    """
    Generate a single image
    """
    global vae
    latents = generate_latents(prompt, seed, num_inference_steps, guidance_scale, vignette_loss_scale, concept, concept_strength, height, width)
    generated_image = latents_to_pil(latents, vae)
    return image_grid(generated_image, 1, 1, None)


def generate_style_images(prompt, num_inference_steps=30, guidance_scale=7.5,
                   vignette_loss_scale=0.0, concept_strength=0.5, height=512, width=512):
    """
    Function to generate images of all the styles
    """
    global art_concepts, vae
    seed_list = [2000, 1000, 500, 600, 100]

    latents_collect = []
    concept_labels = []

    # Load and remove the "none" element
    concepts_list = list(art_concepts.keys())
    concepts_list.remove("none")
    
    for seed_no, concept in zip(seed_list, concepts_list):
        # Clear the CUDA cache
        torch.cuda.empty_cache()
        gc.collect()
        torch.cuda.empty_cache()

        print(f"Generating image with concept '{concept}' at strength {concept_strength}")

        # Generate latents using the concept embedding
        latents = generate_latents(prompt, seed_no, num_inference_steps, guidance_scale, vignette_loss_scale, concept, concept_strength, height, width)
        latents_collect.append(latents)
        concept_labels.append(f"{concept} ({concept_strength})")

    # Show results
    latents_collect = torch.vstack(latents_collect)
    images = latents_to_pil(latents_collect, vae)
    return image_grid(images, 1, len(seed_list), concept_labels)


# Define Gradio interface
# @spaces.GPU(enable_queue=False)
def create_demo():
    with gr.Blocks(title="Guided Stable Diffusion with Styles") as demo:
        gr.Markdown("# Guided Stable Diffusion with Styles")
        
        with gr.Tab("Single Image Generation"):
            with gr.Row():
                with gr.Column():
                    all_styles = ["none"] + list(art_concepts.keys())
                    all_styles.remove("none")  # Remove "none" to avoid duplication
                    all_styles = ["none"] + all_styles  # Add it back at the beginning

                    prompt = gr.Textbox(label="Prompt", placeholder="A cat sitting on a chair")
                    seed = gr.Slider(minimum=0, maximum=10000, step=1, label="Seed", value=1000)
                    concept_style = gr.Dropdown(choices=all_styles, label="Style Concept", value="none")
                    concept_strength = gr.Slider(minimum=0.0, maximum=1.0, step=0.05, label="Concept Strength", value=0.5)
                    num_inference_steps = gr.Slider(minimum=10, maximum=100, step=1, label="Inference Steps", value=30)
                    height = gr.Slider(minimum=256, maximum=1024, step=1, label="Height", value=512)
                    width = gr.Slider(minimum=256, maximum=1024, step=1, label="Width", value=512)
                    guidance_scale = gr.Slider(minimum=1.0, maximum=15.0, step=0.1, label="Guidance Scale", value=8.0)
                    vignette_loss_scale = gr.Slider(minimum=0.0, maximum=100.0, step=1.0, label="Vignette Loss Scale", value=70.0)
                    
                    generate_btn = gr.Button("Generate Image")
                
                with gr.Column():
                    output_image = gr.Image(label="Generated Image", type="pil")
        
        with gr.Tab("Style Grid"):
            with gr.Row():
                with gr.Column():
                    grid_prompt = gr.Textbox(label="Prompt", placeholder="A dog running in the park")
                    grid_num_inference_steps = gr.Slider(minimum=10, maximum=100, step=1, label="Inference Steps", value=30)
                    grid_guidance_scale = gr.Slider(minimum=1.0, maximum=15.0, step=0.1, label="Guidance Scale", value=8.0)
                    grid_vignette_loss_scale = gr.Slider(minimum=0.0, maximum=100.0, step=1.0, label="Vignette Loss Scale", value=70.0)
                    grid_concept_strength = gr.Slider(minimum=0.0, maximum=1.0, step=0.05, label="Concept Strength", value=0.5)
                    
                    grid_generate_btn = gr.Button("Generate Style Grid")
                
                with gr.Column():
                    output_grid = gr.Image(label="Style Grid", type="pil")
        
        # Set up event handlers
        generate_btn.click(
            generate_image,
            inputs=[prompt, seed, num_inference_steps, guidance_scale, 
                    vignette_loss_scale, concept_style, concept_strength, height, width],
            outputs=output_image
        )
        
        grid_generate_btn.click(
            generate_style_images,
            inputs=[grid_prompt, grid_num_inference_steps, 
                    grid_guidance_scale, grid_vignette_loss_scale, grid_concept_strength],
            outputs=output_grid
        )
        
        return demo

# Launch the app
if __name__ == "__main__":

    # Set device
    device = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
    if device == "mps":
        os.environ['PYTORCH_ENABLE_MPS_FALLBACK'] = "1"

    # Load models
    vae, tokenizer, text_encoder, unet, scheduler, pipe = load_models(device=device)

    # Define art style concepts
    art_concepts = {
        "sketch_painting": get_concept_embedding("a sketch painting, pencil drawing, hand-drawn illustration", tokenizer, text_encoder, device),
        "oil_painting": get_concept_embedding("an oil painting, textured canvas, painterly technique", tokenizer, text_encoder, device),
        "watercolor": get_concept_embedding("a watercolor painting, fluid, soft edges", tokenizer, text_encoder, device),
        "digital_art": get_concept_embedding("digital art, computer generated, precise details", tokenizer, text_encoder, device),
        "comic_book": get_concept_embedding("comic book style, ink outlines, cel shading", tokenizer, text_encoder, device),
        "none": None
    }

    demo = create_demo()
    demo.launch(debug=True)