File size: 11,995 Bytes
327f84a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
54b9060
327f84a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
54b9060
 
 
 
327f84a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9ea8844
327f84a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
54b9060
 
 
 
327f84a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a8952e2
 
327f84a
 
 
 
 
 
 
a8952e2
 
 
 
 
 
327f84a
24491ec
327f84a
bf3fe71
327f84a
 
 
a8952e2
 
 
327f84a
a8952e2
327f84a
 
24491ec
327f84a
 
a8952e2
 
 
 
 
327f84a
 
 
 
 
 
a8952e2
 
 
 
 
 
327f84a
24491ec
d33c266
327f84a
bf3fe71
327f84a
 
 
 
 
 
 
 
 
a8952e2
 
 
 
 
 
 
327f84a
24491ec
 
 
 
327f84a
24491ec
327f84a
 
 
 
 
a8952e2
 
 
 
 
 
327f84a
24491ec
 
 
327f84a
24491ec
327f84a
 
2149f08
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
#!/usr/bin/env python3
"""
Gradio Application for model trained on CIFAR10 dataset
Author: Shilpaj Bhalerao
Date: Aug 06, 2023
"""
# Standard Library Imports
import os
from collections import OrderedDict

# Third-Party Imports
import gradio as gr
import numpy as np
import torch
from torchvision import transforms
from pytorch_grad_cam import GradCAM
from pytorch_grad_cam.utils.image import show_cam_on_image
from PIL import Image

# Local Imports
from resnet import LITResNet
from visualize import FeatureMapVisualizer

# Directory Path
example_directory = 'examples/'
model_path = 'epoch=23-step=2112.ckpt'

classes = ('plane', 'car', 'bird', 'cat', 'deer',
           'dog', 'frog', 'horse', 'ship', 'truck')

model = LITResNet.load_from_checkpoint(model_path, map_location=torch.device('cpu'), strict=False, class_names=classes)
model.eval()

# Create an object of the Class
viz = FeatureMapVisualizer(model)


def inference(input_img,
              transparency=0.5,
              number_of_top_classes=3,
              target_layer_number=4):
    """
    Function to run inference on the input image
    :param input_img: Image provided by the user
    :parma transparency: Percentage of cam overlap over the input image
    :param number_of_top_classes: Number of top predictions for the input image
    :param target_layer_number: Layer for which GradCam to be shown
    """
    # Resize the image to (32, 32)
    input_img = Image.fromarray(input_img).resize((32, 32))
    input_img = np.array(input_img)

    # Calculate mean over each channel of input image
    mean_r, mean_g, mean_b = np.mean(input_img[:, :, 0]/255.), np.mean(input_img[:, :, 1]/255.), np.mean(input_img[:, :, 2]/255.)

    # Calculate Standard deviation over each channel
    std_r, std_g, std_b = np.std(input_img[:, :, 0]/255.), np.std(input_img[:, :, 1]/255.), np.std(input_img[:, :, 2]/255.)

    # Convert img to tensor and normalize it
    _transform = transforms.Compose([
        transforms.ToTensor(),
        transforms.Normalize((mean_r, mean_g, mean_b), (std_r, std_g, std_b))
        ])

    # Save a copy of input img
    org_img = input_img

    # Apply the transforms on the input image
    input_img = _transform(input_img)

    # Add batch dimension to perform inference
    input_img = input_img.unsqueeze(0)

    # Get Model Predictions
    with torch.no_grad():
        outputs = model(input_img)
        o = torch.exp(outputs)[0]
        confidences = {classes[i]: float(o[i]) for i in range(10)}

    # Select the top classes based on user input
    sorted_confidences = sorted(confidences.items(), key=lambda val: val[1], reverse=True)
    show_confidences = OrderedDict(sorted_confidences[:number_of_top_classes])

    # Name of layers defined in the model
    _layers = ['prep_layer', 'custom_block1', 'resnet_block1',
               'custom_block2', 'custom_block3', 'resnet_block3']
    target_layers = [eval(f'model.{_layers[target_layer_number-1]}[0]')]

    # Get the class activations from the selected layer
    cam = GradCAM(model=model, target_layers=target_layers)
    grayscale_cam = cam(input_tensor=input_img, targets=None)
    grayscale_cam = grayscale_cam[0, :]

    # Overlay input image with Class activations
    visualization = show_cam_on_image(org_img/255, grayscale_cam, use_rgb=True, image_weight=transparency)
    return show_confidences, visualization


def display_misclassified_images(number: int = 1):
    """
    Display the misclassified images saved during training
    :param number: Number of images to display
    """
    # List to store names of misclassified images
    data = []

    # Get the names of all the files from Misclassified directory
    file_names = os.listdir('misclassified/')

    # Save the correct name and misclassified class name as a tuple in the `data` list
    for file in file_names:
        file_name, extension = file.split('.')
        correct_label, misclassified = file_name.split('_')
        data.append((correct_label, misclassified))

    # Create a path to the images for Gradio to access them
    file_path = ['misclassified/' + file for file in file_names]

    # Return the file path and names of correct and misclassified images
    return file_path[:number], data[:number]


def feature_maps(input_img, kernel_number=32):
    """
    Function to return feature maps for the selected image
    :param input_img: User input image
    :param kernel_number: Number of kernel in all 6 layers
    """
    # Resize the image to (32, 32)
    input_img = Image.fromarray(input_img).resize((32, 32))
    input_img = np.array(input_img)

    # Calculate mean over each channel of input image
    mean_r, mean_g, mean_b = np.mean(input_img[:, :, 0]/255.), np.mean(input_img[:, :, 1]/255.), np.mean(input_img[:, :, 2]/255.)

    # Calculate Standard deviation over each channel
    std_r, std_g, std_b = np.std(input_img[:, :, 0]/255.), np.std(input_img[:, :, 1]/255.), np.std(input_img[:, :, 2]/255.)

    # Convert img to tensor and normalize it
    _transform = transforms.Compose([
        transforms.ToTensor(),
        transforms.Normalize((mean_r, mean_g, mean_b), (std_r, std_g, std_b))
        ])

    # Apply transforms on the input image
    input_img = _transform(input_img)

    # Visualize feature maps for kernel number 32
    plt = viz.visualize_feature_map_of_kernel(image=input_img, kernel_number=kernel_number)
    return plt


def get_kernels(layer_number):
    """
    Function to get the kernels from the layer
    :param layer_number: Number of layer from which kernels to be visualized
    """
    # Visualize kernels from layer
    plt = viz.visualize_kernels_from_layer(layer_number=layer_number)
    return plt


if __name__ == '__main__':
    with gr.Blocks() as demo:
        gr.Markdown(
            """
            # CIFAR10 trained on ResNet18 Model
            A model architecture by [David C](https://github.com/davidcpage) which is trained on CIFAR10 for 24 Epochs to achieve accuracy of 90+%  
            The model works for following classes: `plane`, `car`, `bird`, `cat`, `deer`, `dog`, `frog`, `horse`, `ship`, `truck`
            """
        )

        # #############################################################################
        # ################################ GradCam Tab ################################
        # #############################################################################
        with gr.Tab("GradCam"):
            gr.Markdown(
                """
                Visualize Class Activations Maps generated by the model's layer for the predicted class  
                This is used to see what the model is actually looking at in the image
                """
            )
            with gr.Row():
                img_input = gr.Image(label="Input Image")
                gradcam_outputs = [gr.Label(),
                                   gr.Image(label="Output")]

            with gr.Row():
                gradcam_inputs = [gr.Slider(0, 1, value=0.5,
                                            label="How much percentage overlap of the input image on the activation maps?"),
                                  gr.Slider(1, 10, value=3, step=1,
                                            label="How many top class predictions you want to see?"),
                                  gr.Slider(1, 6, value=4, step=1,
                                            label="From 6 blocks of the model, which block's first convolutional layer's class activation you want to see?")]

            gradcam_button = gr.Button("Submit")
            gradcam_button.click(inference, inputs=[img_input] + gradcam_inputs, outputs=gradcam_outputs)

            gr.Markdown("## Examples")
            gr.Examples([example_directory + 'dog.jpg', example_directory + 'cat.jpg', example_directory + 'frog.jpg',
                         example_directory + 'bird.jpg', example_directory + 'shark-plane.jpg',
                         example_directory + 'car.jpg', example_directory + 'truck.jpg',
                         example_directory + 'horse.jpg', example_directory + 'plane.jpg',
                         example_directory + 'ship.png'],
                        inputs=img_input, fn=inference)

        # ###########################################################################################
        # ################################ Misclassified Images Tab #################################
        # ###########################################################################################
        with gr.Tab("Misclassified Images"):
            gr.Markdown(
                """
                10% of test images were misclassified by the model at the end of the training  
                You can visualize those images with their correct label and misclassified label
                """
            )
            with gr.Row():
                mis_inputs = gr.Slider(1, 10, value=1, step=1,
                                       label="Number of misclassified images to display")
                mis_outputs = [
                    gr.Gallery(label="Misclassified Images", show_label=False, elem_id="gallery"),
                    gr.Dataframe(headers=["Correct Label", "Misclassified Label"], type="array", datatype="str",
                                 row_count=10, col_count=2)]
            mis_button = gr.Button("Display Misclassified Images")
            mis_button.click(display_misclassified_images, inputs=mis_inputs, outputs=mis_outputs)

        # ################################################################################################
        # ################################ Feature Maps Visualization Tab ################################
        # ################################################################################################
        with gr.Tab("Feature Map Visualization"):
            gr.Markdown(
                """
                The model has 6 convolutional blocks. Each block has two or three convolutional layers  
                From each block's first convolutional layer, output of specific kernel number is visualized  
                In the below images `l1` represents first block and `kx` represents the number of kerenel from the first convolutional layer of that block
                """
            )
            with gr.Column():
                feature_map_input = gr.Image(label="Feature Map Input Image")
                feature_map_slider = gr.Slider(1, 32, value=16, step=1,
                                               label="Select a Kernel number whose Features Maps from all 6 block's to be shown")
                feature_map_output = gr.Plot()
                feature_map_button = gr.Button("Visualize FeatureMaps")
                feature_map_button.click(feature_maps, inputs=[feature_map_input, feature_map_slider], outputs=feature_map_output)

        # ##########################################################################################
        # ################################ Kernel Visualization Tab ################################
        # ##########################################################################################
        with gr.Tab("Kernel Visualization"):
            gr.Markdown(
                """
                The model has 6 convolutional blocks. Each block has two or three convolutional layers  
                Some of the Kernels from the first convolutional layer of selected block number are visualized below
                """
            )
            with gr.Column():
                kernel_input = gr.Slider(1, 4, value=2, step=1,
                                         label="Select a block number whose first convolutional layer's Kernels to be shown")
                kernel_output = gr.Plot()
                kernel_button = gr.Button("Visualize Kernels")
                kernel_button.click(get_kernels, inputs=kernel_input, outputs=kernel_output)

    gr.close_all()
    demo.launch()