File size: 11,130 Bytes
63d903a e977112 0b607fb e977112 3890ae0 e977112 0f26a54 2594602 e977112 81c84f4 64581a6 e977112 a7533b2 b4dffd4 4591c38 b4dffd4 84ed5b1 491e7e1 3654a47 491e7e1 0f26a54 3890ae0 9b9a599 8b5e7fa e977112 34018a5 e977112 5cb48ed e977112 8b5e7fa 5cb48ed e977112 8b5e7fa 91260de e977112 5cb48ed 8df9cbb 5cb48ed 8df9cbb 5cb48ed e977112 491e7e1 0af92be e977112 34018a5 e977112 5cb48ed 8b5e7fa 3890ae0 e977112 8b5e7fa e977112 3890ae0 1dd8b2c f800b56 1dd8b2c 84ed5b1 1dd8b2c 58ed008 1dd8b2c 34018a5 f800b56 34018a5 f800b56 34018a5 8b5e7fa e977112 b4dffd4 149b538 b4dffd4 d9bca78 5cb48ed 4e07365 7715cda 5cb48ed 0f26a54 204d06f b4dffd4 2594602 480bd35 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 |
import os
import json
import re
import gradio as gr
import requests
from duckduckgo_search import DDGS
from typing import List
from pydantic import BaseModel, Field
from langchain_community.vectorstores import FAISS
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_core.documents import Document
from huggingface_hub import InferenceClient
import logging
import pandas as pd
import tempfile
# Set up basic configuration for logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
# Environment variables and configurations
huggingface_token = os.environ.get("HUGGINGFACE_TOKEN")
MODELS = [
"mistralai/Mistral-7B-Instruct-v0.3",
"mistralai/Mixtral-8x7B-Instruct-v0.1",
"mistralai/Mistral-Nemo-Instruct-2407",
"meta-llama/Meta-Llama-3.1-8B-Instruct",
"meta-llama/Meta-Llama-3.1-70B-Instruct"
]
MODEL_TOKEN_LIMITS = {
"mistralai/Mistral-7B-Instruct-v0.3": 32768,
"mistralai/Mixtral-8x7B-Instruct-v0.1": 32768,
"mistralai/Mistral-Nemo-Instruct-2407": 32768,
"meta-llama/Meta-Llama-3.1-8B-Instruct": 8192,
"meta-llama/Meta-Llama-3.1-70B-Instruct": 8192,
}
DEFAULT_SYSTEM_PROMPT = """You are a world-class financial AI assistant, capable of complex reasoning and reflection.
Reason through the query inside <thinking> tags, and then provide your final response inside <output> tags.
Providing comprehensive and accurate information based on web search results is essential.
Your goal is to synthesize the given context into a coherent and detailed response that directly addresses the user's query.
Please ensure that your response is well-structured, factual.
If you detect that you made a mistake in your reasoning at any point, correct yourself inside <reflection> tags."""
def process_excel_file(file, model, temperature, num_calls, use_embeddings, system_prompt):
try:
df = pd.read_excel(file.name)
results = []
for _, row in df.iterrows():
question = row['Question']
custom_system_prompt = row['System Prompt']
# Use the existing get_response_with_search function
response_generator = get_response_with_search(question, model, num_calls, temperature, use_embeddings, custom_system_prompt)
full_response = ""
for partial_response, _ in response_generator:
full_response = partial_response # Keep updating with the latest response
if not full_response:
full_response = "No response generated. Please check the input parameters and try again."
results.append(full_response)
df['Response'] = results
# Save to a temporary file
with tempfile.NamedTemporaryFile(delete=False, suffix='.xlsx') as tmp:
df.to_excel(tmp.name, index=False)
return tmp.name
except Exception as e:
logging.error(f"Error processing Excel file: {str(e)}")
return None
def upload_file(file):
return file.name if file else None
def download_file(file_path):
return file_path
def get_embeddings():
return HuggingFaceEmbeddings(model_name="sentence-transformers/stsb-roberta-large")
def duckduckgo_search(query):
with DDGS() as ddgs:
results = list(ddgs.text(query, max_results=5))
return results
class CitingSources(BaseModel):
sources: List[str] = Field(
...,
description="List of sources to cite. Should be an URL of the source."
)
def chatbot_interface(message, history, model, temperature, num_calls, use_embeddings, system_prompt):
if not message.strip():
return "", history
history = history + [(message, "")]
try:
for response in respond(message, history, model, temperature, num_calls, use_embeddings, system_prompt):
history[-1] = (message, response)
yield history
except Exception as e:
logging.error(f"Error in chatbot_interface: {str(e)}")
error_message = f"An error occurred: {str(e)}. Please try again."
history[-1] = (message, error_message)
yield history
def retry_last_response(history, model, temperature, num_calls, use_embeddings, system_prompt):
if not history:
return history
last_user_msg = history[-1][0]
history = history[:-1] # Remove the last response
return chatbot_interface(last_user_msg, history, model, temperature, num_calls, use_embeddings, system_prompt)
def respond(message, history, model, temperature, num_calls, use_embeddings, system_prompt):
logging.info(f"User Query: {message}")
logging.info(f"Model Used: {model}")
logging.info(f"Use Embeddings: {use_embeddings}")
logging.info(f"System Prompt: {system_prompt}")
try:
for main_content, _ in get_response_with_search(message, model, num_calls=num_calls, temperature=temperature, use_embeddings=use_embeddings, system_prompt=system_prompt):
yield main_content
except Exception as e:
logging.error(f"Error with {model}: {str(e)}")
yield f"An error occurred with the {model} model: {str(e)}. Please try again or select a different model."
def create_web_search_vectors(search_results):
embed = get_embeddings()
documents = []
for result in search_results:
if 'body' in result:
content = f"{result['title']}\n{result['body']}\nSource: {result['href']}"
documents.append(Document(page_content=content, metadata={"source": result['href']}))
return FAISS.from_documents(documents, embed)
def summarize_article(article, content, model, system_prompt, user_query, client, temperature=0.2):
prompt = f"""Summarize the following article in the context of broader web search results:
Article:
Title: {article['title']}
URL: {article['href']}
Content: {article['body'][:1000]}... # Truncate to avoid extremely long prompts
Additional Context:
{content[:1000]}... # Truncate additional context as well
User Query: {user_query}
Write a detailed and complete research document which addresses the User Query, incorporating both the specific article and the broader context. Focus on the most relevant information.
"""
# Calculate input tokens (this is an approximation, you might need a more accurate method)
input_tokens = len(prompt.split()) // 4
# Get the token limit for the current model
model_token_limit = MODEL_TOKEN_LIMITS.get(model, 8192) # Default to 8192 if model not found
# Calculate max_new_tokens
max_new_tokens = min(model_token_limit - input_tokens, 6500) # Cap at 6500 to be safe
try:
response = client.chat_completion(
messages=[
{"role": "system", "content": system_prompt},
{"role": "user", "content": prompt}
],
max_tokens=max_new_tokens,
temperature=temperature,
stream=False,
top_p=0.8,
)
if hasattr(response, 'choices') and response.choices:
for choice in response.choices:
if hasattr(choice, 'message') and hasattr(choice.message, 'content'):
return choice.message.content.strip()
except Exception as e:
logging.error(f"Error summarizing article: {str(e)}")
return f"Error summarizing article: {str(e)}"
return "Unable to generate summary."
def get_response_with_search(query, model, num_calls=3, temperature=0.2, use_embeddings=True, system_prompt=DEFAULT_SYSTEM_PROMPT):
search_results = duckduckgo_search(query)
client = InferenceClient(model, token=huggingface_token)
# Prepare overall context
overall_context = "\n".join([f"{result['title']}\n{result['body']}" for result in search_results])
summaries = []
for result in search_results:
summary = summarize_article(result, overall_context, model, system_prompt, query, client, temperature)
summaries.append({
"title": result['title'],
"url": result['href'],
"summary": summary
})
yield format_output(summaries), ""
def format_output(summaries):
output = "Here are the summarized search results:\n\n"
for item in summaries:
output += f"News Title: {item['title']}\n"
output += f"URL: {item['url']}\n"
output += f"Summary: {item['summary']}\n\n"
return output
def vote(data: gr.LikeData):
if data.liked:
print(f"You upvoted this response: {data.value}")
else:
print(f"You downvoted this response: {data.value}")
css = """
/* Fine-tune chatbox size */
"""
def initial_conversation():
return [
(None, "Welcome! I'm your AI assistant for web search. Here's how you can use me:\n\n"
"1. Ask me any question, and I'll search the web for information.\n"
"2. You can adjust the system prompt for fine-tuned responses, whether to use embeddings, and the temperature.\n"
"To get started, ask me a question!")
]
# Modify the Gradio interface
with gr.Blocks() as demo:
gr.Markdown("# AI-powered Web Search Assistant")
gr.Markdown("Ask questions and get answers from web search results.")
with gr.Row():
chatbot = gr.Chatbot(
show_copy_button=True,
likeable=True,
layout="bubble",
height=400,
value=initial_conversation()
)
with gr.Row():
message = gr.Textbox(placeholder="Ask a question", container=False, scale=7)
submit_button = gr.Button("Submit")
with gr.Accordion("⚙️ Parameters", open=False):
model = gr.Dropdown(choices=MODELS, label="Select Model", value=MODELS[3])
temperature = gr.Slider(minimum=0.1, maximum=1.0, value=0.2, step=0.1, label="Temperature")
num_calls = gr.Slider(minimum=1, maximum=5, value=1, step=1, label="Number of API Calls")
use_embeddings = gr.Checkbox(label="Use Embeddings", value=False)
system_prompt = gr.Textbox(label="System Prompt", lines=5, value=DEFAULT_SYSTEM_PROMPT)
with gr.Accordion("Batch Processing", open=False):
excel_file = gr.File(label="Upload Excel File", file_types=[".xlsx"])
process_button = gr.Button("Process Excel File")
download_button = gr.File(label="Download Processed File")
# Event handlers
submit_button.click(chatbot_interface, inputs=[message, chatbot, model, temperature, num_calls, use_embeddings, system_prompt], outputs=chatbot)
message.submit(chatbot_interface, inputs=[message, chatbot, model, temperature, num_calls, use_embeddings, system_prompt], outputs=chatbot)
# Excel processing
excel_file.change(upload_file, inputs=[excel_file], outputs=[excel_file])
process_button.click(
process_excel_file,
inputs=[excel_file, model, temperature, num_calls, use_embeddings, system_prompt],
outputs=[download_button]
)
if __name__ == "__main__":
demo.launch(share=True) |