Shuu12121 commited on
Commit
efb129d
·
verified ·
1 Parent(s): 013b281

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +50 -50
app.py CHANGED
@@ -1,64 +1,64 @@
 
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
 
 
 
 
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
 
 
 
 
9
 
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
 
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
 
26
- messages.append({"role": "user", "content": message})
 
 
 
27
 
28
- response = ""
 
 
29
 
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
 
38
 
39
- response += token
40
- yield response
41
 
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
  ],
 
 
 
60
  )
61
 
62
-
63
  if __name__ == "__main__":
64
- demo.launch()
 
1
+ # CodeSearch-ModernBERT-Owl Demo Space using CodeSearchNet Dataset
2
  import gradio as gr
3
+ import torch
4
+ import random
5
+ from sentence_transformers import SentenceTransformer, util
6
+ from datasets import load_dataset
7
+ from spaces import GPU
8
 
9
+ # --- Load model ---
10
+ model = SentenceTransformer("Shuu12121/CodeSearch-ModernBERT-Owl")
11
+ model.eval()
 
12
 
13
+ # --- Load CodeSearchNet dataset (test split only) ---
14
+ dataset_all = load_dataset("code_search_net", split="test")
15
+ lang_filter = ["python", "java", "javascript", "ruby", "go", "php"]
16
 
17
+ # --- UI for language choice ---
18
+ def get_random_query(lang: str, seed: int = 42):
19
+ subset = dataset_all.filter(lambda x: x["language"] == lang)
20
+ random.seed(seed)
21
+ idx = random.randint(0, len(subset) - 1)
22
+ sample = subset[idx]
23
+ return sample["function"] or "", sample["docstring"] or ""
 
 
24
 
25
+ @GPU
26
+ def code_search_demo(lang: str, seed: int):
27
+ code_str, doc_str = get_random_query(lang, seed)
28
+ query_emb = model.encode(doc_str, convert_to_tensor=True)
 
29
 
30
+ # ランダムに取得した同一言語の10件の関数とドキュメントを比較対象として選択
31
+ candidates = dataset_all.filter(lambda x: x["language"] == lang).shuffle(seed=seed).select(range(10))
32
+ candidate_texts = [c["function"] or "" for c in candidates]
33
+ candidate_embeddings = model.encode(candidate_texts, convert_to_tensor=True)
34
 
35
+ # 類似度計算
36
+ cos_scores = util.cos_sim(query_emb, candidate_embeddings)[0]
37
+ results = sorted(zip(candidate_texts, cos_scores), key=lambda x: x[1], reverse=True)
38
 
39
+ # 結果フォーマット(ランキング付き)
40
+ output = f"### 🔍 Query Docstring (Language: {lang})\n\n" + doc_str + "\n\n"
41
+ output += "## 🏆 Top Matches:\n"
42
+ medals = ["🥇", "🥈", "🥉"] + [f"#{i+1}" for i in range(3, len(results))]
43
+ for i, (code, score) in enumerate(results):
44
+ label = medals[i] if i < len(medals) else f"#{i+1}"
45
+ output += f"\n**{label}** - Similarity: {score.item():.4f}\n\n```
46
+ {code.strip()[:1000]}
47
+ ```\n"
48
 
49
+ return output
 
50
 
51
+ # --- Gradio Interface ---
52
+ demo = gr.Interface(
53
+ fn=code_search_demo,
54
+ inputs=[
55
+ gr.Dropdown(["python", "java", "javascript", "ruby", "go", "php"], label="Language", value="python"),
56
+ gr.Slider(0, 100000, value=42, step=1, label="Random Seed")
 
 
 
 
 
 
 
 
 
 
 
57
  ],
58
+ outputs=gr.Markdown(label="Search Result"),
59
+ title="🔎 CodeSearch-ModernBERT-Owl Demo",
60
+ description="コードドキュメントから関数検索を行うデモ(CodeSearchNet + CodeModernBERT-Owl)"
61
  )
62
 
 
63
  if __name__ == "__main__":
64
+ demo.launch()