Update app.py
Browse files
app.py
CHANGED
@@ -1,64 +1,64 @@
|
|
|
|
1 |
import gradio as gr
|
2 |
-
|
|
|
|
|
|
|
|
|
3 |
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
8 |
|
|
|
|
|
|
|
9 |
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
):
|
18 |
-
messages = [{"role": "system", "content": system_message}]
|
19 |
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
messages.append({"role": "assistant", "content": val[1]})
|
25 |
|
26 |
-
|
|
|
|
|
|
|
27 |
|
28 |
-
|
|
|
|
|
29 |
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
|
|
38 |
|
39 |
-
|
40 |
-
yield response
|
41 |
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
additional_inputs=[
|
49 |
-
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
50 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
51 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
52 |
-
gr.Slider(
|
53 |
-
minimum=0.1,
|
54 |
-
maximum=1.0,
|
55 |
-
value=0.95,
|
56 |
-
step=0.05,
|
57 |
-
label="Top-p (nucleus sampling)",
|
58 |
-
),
|
59 |
],
|
|
|
|
|
|
|
60 |
)
|
61 |
|
62 |
-
|
63 |
if __name__ == "__main__":
|
64 |
-
demo.launch()
|
|
|
1 |
+
# CodeSearch-ModernBERT-Owl Demo Space using CodeSearchNet Dataset
|
2 |
import gradio as gr
|
3 |
+
import torch
|
4 |
+
import random
|
5 |
+
from sentence_transformers import SentenceTransformer, util
|
6 |
+
from datasets import load_dataset
|
7 |
+
from spaces import GPU
|
8 |
|
9 |
+
# --- Load model ---
|
10 |
+
model = SentenceTransformer("Shuu12121/CodeSearch-ModernBERT-Owl")
|
11 |
+
model.eval()
|
|
|
12 |
|
13 |
+
# --- Load CodeSearchNet dataset (test split only) ---
|
14 |
+
dataset_all = load_dataset("code_search_net", split="test")
|
15 |
+
lang_filter = ["python", "java", "javascript", "ruby", "go", "php"]
|
16 |
|
17 |
+
# --- UI for language choice ---
|
18 |
+
def get_random_query(lang: str, seed: int = 42):
|
19 |
+
subset = dataset_all.filter(lambda x: x["language"] == lang)
|
20 |
+
random.seed(seed)
|
21 |
+
idx = random.randint(0, len(subset) - 1)
|
22 |
+
sample = subset[idx]
|
23 |
+
return sample["function"] or "", sample["docstring"] or ""
|
|
|
|
|
24 |
|
25 |
+
@GPU
|
26 |
+
def code_search_demo(lang: str, seed: int):
|
27 |
+
code_str, doc_str = get_random_query(lang, seed)
|
28 |
+
query_emb = model.encode(doc_str, convert_to_tensor=True)
|
|
|
29 |
|
30 |
+
# ランダムに取得した同一言語の10件の関数とドキュメントを比較対象として選択
|
31 |
+
candidates = dataset_all.filter(lambda x: x["language"] == lang).shuffle(seed=seed).select(range(10))
|
32 |
+
candidate_texts = [c["function"] or "" for c in candidates]
|
33 |
+
candidate_embeddings = model.encode(candidate_texts, convert_to_tensor=True)
|
34 |
|
35 |
+
# 類似度計算
|
36 |
+
cos_scores = util.cos_sim(query_emb, candidate_embeddings)[0]
|
37 |
+
results = sorted(zip(candidate_texts, cos_scores), key=lambda x: x[1], reverse=True)
|
38 |
|
39 |
+
# 結果フォーマット(ランキング付き)
|
40 |
+
output = f"### 🔍 Query Docstring (Language: {lang})\n\n" + doc_str + "\n\n"
|
41 |
+
output += "## 🏆 Top Matches:\n"
|
42 |
+
medals = ["🥇", "🥈", "🥉"] + [f"#{i+1}" for i in range(3, len(results))]
|
43 |
+
for i, (code, score) in enumerate(results):
|
44 |
+
label = medals[i] if i < len(medals) else f"#{i+1}"
|
45 |
+
output += f"\n**{label}** - Similarity: {score.item():.4f}\n\n```
|
46 |
+
{code.strip()[:1000]}
|
47 |
+
```\n"
|
48 |
|
49 |
+
return output
|
|
|
50 |
|
51 |
+
# --- Gradio Interface ---
|
52 |
+
demo = gr.Interface(
|
53 |
+
fn=code_search_demo,
|
54 |
+
inputs=[
|
55 |
+
gr.Dropdown(["python", "java", "javascript", "ruby", "go", "php"], label="Language", value="python"),
|
56 |
+
gr.Slider(0, 100000, value=42, step=1, label="Random Seed")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
],
|
58 |
+
outputs=gr.Markdown(label="Search Result"),
|
59 |
+
title="🔎 CodeSearch-ModernBERT-Owl Demo",
|
60 |
+
description="コードドキュメントから関数検索を行うデモ(CodeSearchNet + CodeModernBERT-Owl)"
|
61 |
)
|
62 |
|
|
|
63 |
if __name__ == "__main__":
|
64 |
+
demo.launch()
|