Spaces:
Running
Running
File size: 27,697 Bytes
850a7ff |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 |
import gradio as gr
import random
import re
import warnings
import math
from collections import Counter
warnings.filterwarnings("ignore")
# Import NLTK with error handling
try:
import nltk
import textstat
from nltk.corpus import wordnet
from nltk.tokenize import sent_tokenize, word_tokenize
NLTK_AVAILABLE = True
# Download required NLTK data
try:
nltk.data.find('tokenizers/punkt_tab')
except LookupError:
nltk.download('punkt_tab')
try:
nltk.data.find('tokenizers/punkt')
except LookupError:
nltk.download('punkt')
try:
nltk.data.find('corpora/wordnet')
except LookupError:
nltk.download('wordnet')
try:
nltk.data.find('corpora/omw-1.4')
except LookupError:
nltk.download('omw-1.4')
except ImportError as e:
print(f"NLTK import error: {e}")
NLTK_AVAILABLE = False
import textstat
class AdvancedHumanizer:
def __init__(self):
self.transition_words = [
"However", "Nevertheless", "Furthermore", "Moreover", "Additionally",
"Consequently", "Therefore", "Thus", "In contrast", "Similarly",
"On the other hand", "Meanwhile", "Subsequently", "Notably",
"Importantly", "Significantly", "Interestingly", "Remarkably"
]
self.hedging_phrases = [
"appears to", "seems to", "tends to", "suggests that", "indicates that",
"may well", "might be", "could be", "potentially", "presumably",
"arguably", "to some extent", "in many cases", "generally speaking"
]
self.academic_connectors = [
"In light of this", "Building upon this", "This finding suggests",
"It is worth noting that", "This observation", "These results",
"The evidence indicates", "This approach", "The data reveals"
]
# Enhanced vocabulary replacements for better humanization
self.vocabulary_replacements = {
"significant": ["notable", "considerable", "substantial", "important", "remarkable"],
"demonstrate": ["show", "illustrate", "reveal", "display", "indicate"],
"utilize": ["use", "employ", "apply", "implement", "make use of"],
"implement": ["apply", "use", "put into practice", "carry out", "execute"],
"generate": ["create", "produce", "develop", "form", "make"],
"facilitate": ["help", "enable", "assist", "support", "aid"],
"optimize": ["improve", "enhance", "refine", "perfect", "better"],
"analyze": ["examine", "study", "investigate", "assess", "evaluate"],
"therefore": ["thus", "hence", "consequently", "as a result", "for this reason"],
"however": ["nevertheless", "nonetheless", "yet", "on the other hand", "but"],
"furthermore": ["moreover", "additionally", "in addition", "what is more", "besides"],
"substantial": ["significant", "considerable", "notable", "important", "major"],
"subsequently": ["later", "then", "afterward", "following this", "next"],
"approximately": ["about", "roughly", "around", "nearly", "close to"],
"numerous": ["many", "several", "multiple", "various", "a number of"],
"encompasses": ["includes", "covers", "contains", "involves", "comprises"],
"methodology": ["method", "approach", "technique", "procedure", "process"],
"comprehensive": ["complete", "thorough", "extensive", "detailed", "full"],
"indicates": ["shows", "suggests", "points to", "reveals", "demonstrates"],
"established": ["set up", "created", "formed", "developed", "built"]
}
def split_into_sentences(self, text):
"""Smart sentence splitting with NLTK fallback"""
if NLTK_AVAILABLE:
return sent_tokenize(text)
else:
# Enhanced fallback sentence splitting
sentences = []
current = ""
for char in text:
current += char
if char == '.' and len(current) > 10:
# Check if this looks like end of sentence
remaining = text[text.find(current) + len(current):]
if remaining and (remaining[0].isupper() or remaining.strip().startswith(('The ', 'This ', 'A '))):
sentences.append(current.strip())
current = ""
if current.strip():
sentences.append(current.strip())
return [s for s in sentences if len(s.strip()) > 5]
def add_natural_variations(self, text):
"""Add natural linguistic variations to make text less robotic"""
sentences = self.split_into_sentences(text)
varied_sentences = []
for i, sentence in enumerate(sentences):
sentence = sentence.strip()
if not sentence.endswith('.'):
sentence += '.'
# Randomly add hedging language
if random.random() < 0.3 and not any(phrase in sentence.lower() for phrase in self.hedging_phrases):
hedge = random.choice(self.hedging_phrases)
if sentence.startswith("The ") or sentence.startswith("This "):
words = sentence.split()
if len(words) > 2:
words.insert(2, hedge)
sentence = " ".join(words)
# Add transitional phrases for flow
if i > 0 and random.random() < 0.4:
connector = random.choice(self.academic_connectors)
sentence = f"{connector}, {sentence.lower()}"
varied_sentences.append(sentence)
return " ".join(varied_sentences)
def diversify_vocabulary(self, text):
"""Replace common words with synonyms for variation"""
if NLTK_AVAILABLE:
words = word_tokenize(text)
result = []
for word in words:
if word.isalpha() and len(word) > 4 and random.random() < 0.2:
synonyms = []
for syn in wordnet.synsets(word):
for lemma in syn.lemmas():
if lemma.name() != word and '_' not in lemma.name():
synonyms.append(lemma.name())
if synonyms:
replacement = random.choice(synonyms[:3])
result.append(replacement)
else:
result.append(word)
else:
result.append(word)
return " ".join(result)
else:
# Enhanced fallback with more replacements
result = text
for original, alternatives in self.vocabulary_replacements.items():
if original.lower() in result.lower():
replacement = random.choice(alternatives)
pattern = re.compile(re.escape(original), re.IGNORECASE)
result = pattern.sub(replacement, result, count=1)
return result
def adjust_sentence_structure(self, text):
"""Modify sentence structures for more natural flow"""
sentences = self.split_into_sentences(text)
modified = []
for sentence in sentences:
words = sentence.split()
# For long sentences, sometimes break them up
if len(words) > 20 and random.random() < 0.4:
# Find a good break point
break_words = ['and', 'but', 'which', 'that', 'because', 'since', 'while']
for i, word in enumerate(words[8:18], 8): # Look in middle section
if word.lower() in break_words:
part1 = " ".join(words[:i]) + "."
part2 = " ".join(words[i+1:])
if len(part2) > 5: # Only if second part is substantial
part2 = part2[0].upper() + part2[1:] if part2 else part2
modified.extend([part1, part2])
break
else:
modified.append(sentence)
else:
modified.append(sentence)
return " ".join(modified)
def clean_and_format(self, text):
"""Clean up the text formatting"""
# Remove extra spaces
text = re.sub(r'\s+', ' ', text)
text = re.sub(r'\s+([.,!?;:])', r'\1', text)
# Fix capitalization
sentences = self.split_into_sentences(text)
formatted = []
for sentence in sentences:
sentence = sentence.strip()
if sentence:
# Capitalize first letter
sentence = sentence[0].upper() + sentence[1:] if len(sentence) > 1 else sentence.upper()
# Ensure proper ending
if not sentence.endswith(('.', '!', '?')):
sentence += '.'
formatted.append(sentence)
return " ".join(formatted)
def humanize_text(self, text, intensity="medium"):
"""Main humanization function"""
if not text or len(text.strip()) < 10:
return "Please enter substantial text to humanize (at least 10 characters)."
result = text.strip()
try:
# Apply different levels of humanization
if intensity.lower() in ["light", "low"]:
# Just vocabulary changes
result = self.diversify_vocabulary(result)
elif intensity.lower() in ["medium", "moderate"]:
# Vocabulary + natural flow
result = self.diversify_vocabulary(result)
result = self.add_natural_variations(result)
elif intensity.lower() in ["heavy", "high", "maximum"]:
# All techniques
result = self.diversify_vocabulary(result)
result = self.add_natural_variations(result)
result = self.adjust_sentence_structure(result)
# Always clean up formatting
result = self.clean_and_format(result)
return result if result and len(result) > 10 else text
except Exception as e:
print(f"Humanization error: {e}")
return "Error processing text. Please try again with different input."
class AIDetector:
def __init__(self):
"""Initialize AI detection patterns and thresholds"""
self.ai_phrases = [
"demonstrates significant", "substantial improvements", "comprehensive analysis",
"furthermore", "moreover", "additionally", "consequently", "therefore",
"implementation of", "utilization of", "optimization of", "enhancement of",
"facilitate", "demonstrate", "indicate", "substantial", "comprehensive",
"significant improvements", "notable enhancements", "effective approach",
"robust methodology", "systematic approach", "extensive evaluation",
"empirical results", "experimental validation", "performance metrics",
"benchmark datasets", "state-of-the-art", "cutting-edge", "novel approach",
"innovative solution", "groundbreaking", "revolutionary", "paradigm shift"
]
self.overused_academic_words = [
"significant", "substantial", "comprehensive", "extensive", "robust",
"novel", "innovative", "efficient", "effective", "optimal", "superior",
"enhanced", "improved", "advanced", "sophisticated", "cutting-edge",
"state-of-the-art", "groundbreaking", "revolutionary", "paradigm"
]
self.excessive_transitions = [
"furthermore", "moreover", "additionally", "consequently", "therefore",
"thus", "hence", "nevertheless", "nonetheless", "however"
]
self.formal_patterns = [
r"the implementation of \w+",
r"the utilization of \w+",
r"in order to \w+",
r"it is important to note that",
r"it should be emphasized that",
r"it can be observed that",
r"the results demonstrate that",
r"the findings indicate that"
]
def calculate_ai_probability(self, text):
"""Calculate the probability that text is AI-generated"""
if not text or len(text.strip()) < 50:
return {"probability": 0, "confidence": "Low", "details": {"error": "Text too short for analysis"}}
scores = {}
# Various AI detection checks
scores['ai_phrases'] = self._check_ai_phrases(text)
scores['vocab_repetition'] = self._check_vocabulary_repetition(text)
scores['structure_patterns'] = self._check_structure_patterns(text)
scores['transition_overuse'] = self._check_transition_overuse(text)
scores['formal_patterns'] = self._check_formal_patterns(text)
scores['sentence_consistency'] = self._check_sentence_consistency(text)
scores['readability'] = self._check_readability_patterns(text)
# Calculate weighted final score
weights = {
'ai_phrases': 0.2, 'vocab_repetition': 0.15, 'structure_patterns': 0.15,
'transition_overuse': 0.15, 'formal_patterns': 0.15,
'sentence_consistency': 0.1, 'readability': 0.1
}
final_score = sum(scores[key] * weights[key] for key in weights)
final_score = min(100, max(0, final_score))
# Determine confidence level
if final_score >= 80:
confidence, verdict = "Very High", "Likely AI-Generated"
elif final_score >= 60:
confidence, verdict = "High", "Probably AI-Generated"
elif final_score >= 40:
confidence, verdict = "Medium", "Possibly AI-Generated"
elif final_score >= 20:
confidence, verdict = "Low", "Probably Human-Written"
else:
confidence, verdict = "Very Low", "Likely Human-Written"
return {
"probability": round(final_score, 1),
"confidence": confidence,
"verdict": verdict,
"details": {k: round(v, 1) for k, v in scores.items()}
}
def _check_ai_phrases(self, text):
text_lower = text.lower()
phrase_count = sum(1 for phrase in self.ai_phrases if phrase in text_lower)
words = len(text.split())
return min(100, (phrase_count / words) * 1000 * 10) if words > 0 else 0
def _check_vocabulary_repetition(self, text):
words = [word.lower().strip('.,!?;:') for word in text.split() if word.isalpha()]
if len(words) < 10:
return 0
word_counts = Counter(words)
overused_count = sum(1 for word in self.overused_academic_words if word_counts.get(word, 0) > 1)
return min(100, (overused_count / len(self.overused_academic_words)) * 200)
def _check_structure_patterns(self, text):
if NLTK_AVAILABLE:
sentences = sent_tokenize(text)
else:
sentences = [s.strip() for s in text.split('.') if s.strip()]
if len(sentences) < 3:
return 0
starters = [s.split()[:3] for s in sentences if len(s.split()) >= 3]
starter_counts = Counter([' '.join(starter) for starter in starters])
repeated_starters = sum(1 for count in starter_counts.values() if count > 1)
return min(100, (repeated_starters / len(sentences)) * 150) if sentences else 0
def _check_transition_overuse(self, text):
text_lower = text.lower()
transition_count = sum(1 for transition in self.excessive_transitions if transition in text_lower)
words = len(text.split())
return min(100, (transition_count / words) * 100 * 20) if words > 0 else 0
def _check_formal_patterns(self, text):
pattern_count = sum(len(re.findall(pattern, text.lower())) for pattern in self.formal_patterns)
words = len(text.split())
return min(100, (pattern_count / words) * 1000 * 15) if words > 0 else 0
def _check_sentence_consistency(self, text):
if NLTK_AVAILABLE:
sentences = sent_tokenize(text)
else:
sentences = [s.strip() for s in text.split('.') if s.strip()]
if len(sentences) < 5:
return 0
lengths = [len(s.split()) for s in sentences]
avg_length = sum(lengths) / len(lengths)
variance = sum((length - avg_length) ** 2 for length in lengths) / len(lengths)
std_dev = math.sqrt(variance)
consistency_score = 100 - min(100, std_dev * 10)
return max(0, consistency_score - 20)
def _check_readability_patterns(self, text):
try:
words = text.split()
sentences = len([s for s in text.split('.') if s.strip()])
if sentences == 0:
return 0
avg_words_per_sentence = len(words) / sentences
if 15 <= avg_words_per_sentence <= 25:
return 30
elif 25 < avg_words_per_sentence <= 35:
return 50
else:
return 10
except:
return 0
# Initialize components
humanizer = AdvancedHumanizer()
ai_detector = AIDetector()
def process_text(input_text, humanization_level):
"""Process the input text"""
return humanizer.humanize_text(input_text, humanization_level)
def detect_ai_text(input_text):
"""Detect if text is AI-generated"""
if not input_text.strip():
return "Please enter some text to analyze."
result = ai_detector.calculate_ai_probability(input_text)
return f"""
## π€ AI Detection Analysis
**Overall Assessment:** {result['verdict']}
**AI Probability:** {result['probability']}%
**Confidence Level:** {result['confidence']}
### π Detailed Breakdown:
- **AI Phrases Score:** {result['details']['ai_phrases']}%
- **Vocabulary Repetition:** {result['details']['vocab_repetition']}%
- **Structure Patterns:** {result['details']['structure_patterns']}%
- **Transition Overuse:** {result['details']['transition_overuse']}%
- **Formal Patterns:** {result['details']['formal_patterns']}%
- **Sentence Consistency:** {result['details']['sentence_consistency']}%
- **Readability Score:** {result['details']['readability']}%
### π‘ Interpretation:
- **0-20%:** Likely human-written with natural variations
- **21-40%:** Possibly AI-generated or heavily edited
- **41-60%:** Probably AI-generated with some humanization
- **61-80%:** Likely AI-generated with minimal editing
- **81-100%:** Very likely raw AI-generated content
"""
def combined_process(text, level):
"""Humanize text and then analyze it"""
if not text.strip():
return "Please enter text to process.", "No analysis available."
humanized = process_text(text, level)
analysis = detect_ai_text(humanized)
return humanized, analysis
# Create Gradio interface
with gr.Blocks(theme="soft", title="AI Text Humanizer & Detector") as demo:
gr.Markdown("""
# π€β‘οΈπ¨ AI Text Humanizer & Detector Pro
**Complete solution for AI text processing - Humanize AND Detect AI-generated content**
Transform robotic AI text into natural, human-like writing, then verify the results with our built-in AI detector.
β οΈ **Note:** This tool is for educational purposes. Please use responsibly and maintain academic integrity.
""")
with gr.Tabs():
# Humanization Tab
with gr.TabItem("π Text Humanizer"):
gr.Markdown("### Transform AI text into natural, human-like writing")
with gr.Row():
with gr.Column():
humanize_input = gr.Textbox(
lines=10,
placeholder="Enter machine-generated or robotic academic text here...",
label="Raw Input Text",
info="Paste your AI-generated text that needs to be humanized"
)
humanization_level = gr.Radio(
choices=["Light", "Medium", "Heavy"],
value="Medium",
label="Humanization Level",
info="Light: Basic changes | Medium: Vocabulary + flow | Heavy: All techniques"
)
humanize_btn = gr.Button("π Humanize Text", variant="primary", size="lg")
with gr.Column():
humanize_output = gr.Textbox(
label="Humanized Academic Output",
lines=10,
show_copy_button=True,
info="Copy this natural, human-like text"
)
# Examples for humanizer
gr.Examples(
examples=[
[
"The implementation of artificial intelligence algorithms demonstrates significant improvements in computational efficiency and accuracy metrics across various benchmark datasets.",
"Medium"
],
[
"Machine learning models exhibit superior performance characteristics when evaluated against traditional statistical approaches in predictive analytics applications.",
"Heavy"
]
],
inputs=[humanize_input, humanization_level],
outputs=humanize_output
)
# AI Detection Tab
with gr.TabItem("π΅οΈ AI Detector"):
gr.Markdown("### Analyze text to detect if it's AI-generated")
with gr.Row():
with gr.Column():
detect_input = gr.Textbox(
lines=10,
placeholder="Paste text here to check if it's AI-generated...",
label="Text to Analyze",
info="Enter any text to check its AI probability"
)
detect_btn = gr.Button("π Analyze Text", variant="secondary", size="lg")
with gr.Column():
detect_output = gr.Markdown(
label="AI Detection Results",
value="Analysis results will appear here..."
)
# Examples for detector
gr.Examples(
examples=[
["The implementation of machine learning algorithms demonstrates significant improvements in computational efficiency and accuracy metrics across various benchmark datasets. Furthermore, these results indicate substantial enhancements in performance."],
["I love going to the coffee shop on weekends. The barista there makes the best cappuccino I've ever had, and I always end up chatting with other customers about random stuff."],
["The comprehensive analysis reveals that the optimization of neural network architectures facilitates enhanced performance characteristics in predictive analytics applications."]
],
inputs=[detect_input],
outputs=detect_output
)
# Combined Analysis Tab
with gr.TabItem("π Humanize & Test"):
gr.Markdown("### Humanize text and immediately test the results")
with gr.Column():
combined_input = gr.Textbox(
lines=8,
placeholder="Enter AI-generated text to humanize and test...",
label="Original AI Text",
info="This will be humanized and then tested for AI detection"
)
combined_level = gr.Radio(
choices=["Light", "Medium", "Heavy"],
value="Medium",
label="Humanization Level"
)
combined_btn = gr.Button("π Humanize & Analyze", variant="primary", size="lg")
with gr.Row():
with gr.Column():
combined_humanized = gr.Textbox(
label="Humanized Text",
lines=8,
show_copy_button=True
)
with gr.Column():
combined_analysis = gr.Markdown(
label="AI Detection Analysis",
value="Analysis will appear here..."
)
# Info Tab
with gr.TabItem("βΉοΈ Instructions"):
gr.Markdown("""
### π― How to Use:
**Text Humanizer:**
1. Paste your AI-generated text
2. Choose humanization level
3. Get natural, human-like output
**AI Detector:**
1. Paste any text
2. Get detailed AI probability analysis
3. See breakdown of detection factors
**Combined Mode:**
1. Humanize and test in one step
2. Perfect for optimizing results
3. Iterate until satisfied
### π§ Features:
**Humanization Techniques:**
- β
Advanced vocabulary variations
- β
Natural sentence flow enhancement
- β
Academic tone preservation
- β
Structure diversification
- β
Linguistic pattern breaking
**AI Detection:**
- π 7-point analysis system
- π Detailed scoring breakdown
- π― Confidence assessment
- π‘ Improvement suggestions
### βοΈ Ethical Usage:
This tool is designed for:
- β
Improving writing quality
- β
Learning natural language patterns
- β
Educational purposes
- β
Understanding AI detection
**Please use responsibly:**
- π« Don't use for plagiarism
- π« Don't violate academic policies
- π« Don't misrepresent authorship
- β
Maintain academic integrity
""")
# Event handlers
humanize_btn.click(
fn=process_text,
inputs=[humanize_input, humanization_level],
outputs=humanize_output
)
detect_btn.click(
fn=detect_ai_text,
inputs=[detect_input],
outputs=detect_output
)
combined_btn.click(
fn=combined_process,
inputs=[combined_input, combined_level],
outputs=[combined_humanized, combined_analysis]
)
if __name__ == "__main__":
demo.launch(
share=True, # Enable public sharing
server_name="0.0.0.0",
server_port=7860
)
|