File size: 12,393 Bytes
850a7ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
import gradio as gr
import pandas as pd
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
import torch
import random
import re
import warnings
warnings.filterwarnings("ignore")

class BatchHumanizer:
    def __init__(self):
        try:
            self.model_name = "Vamsi/T5_Paraphrase_Paws"
            self.tokenizer = AutoTokenizer.from_pretrained(self.model_name, use_fast=False)
            self.model = AutoModelForSeq2SeqLM.from_pretrained(self.model_name)
            print("βœ… Batch Humanizer model loaded successfully")
        except Exception as e:
            print(f"❌ Error loading model: {e}")
            self.tokenizer = None
            self.model = None
    
    def humanize_single_text(self, text, strength="medium"):
        """Humanize a single piece of text"""
        if not self.model or not self.tokenizer:
            return self.fallback_humanize(text)
        
        try:
            # Paraphrase using T5
            input_text = f"paraphrase: {text}"
            input_ids = self.tokenizer.encode(
                input_text,
                return_tensors="pt",
                max_length=512,
                truncation=True
            )
            
            # Adjust parameters based on strength
            if strength == "light":
                temp, top_p = 1.1, 0.9
            elif strength == "heavy":
                temp, top_p = 1.5, 0.95
            else:  # medium
                temp, top_p = 1.3, 0.92
            
            with torch.no_grad():
                outputs = self.model.generate(
                    input_ids=input_ids,
                    max_length=min(len(text.split()) + 50, 512),
                    num_beams=5,
                    temperature=temp,
                    top_p=top_p,
                    do_sample=True,
                    early_stopping=True,
                    repetition_penalty=1.2
                )
            
            result = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
            
            # Additional humanization
            if strength in ["medium", "heavy"]:
                result = self.add_natural_variations(result)
            
            return self.clean_text(result) if result and len(result) > 10 else text
            
        except Exception as e:
            print(f"Error humanizing text: {e}")
            return self.fallback_humanize(text)
    
    def fallback_humanize(self, text):
        """Simple fallback humanization without model"""
        # Basic word replacements
        replacements = {
            "utilize": "use", "demonstrate": "show", "facilitate": "help",
            "optimize": "improve", "implement": "apply", "generate": "create",
            "therefore": "thus", "however": "yet", "furthermore": "also"
        }
        
        result = text
        for old, new in replacements.items():
            result = re.sub(r'\b' + old + r'\b', new, result, flags=re.IGNORECASE)
        
        return result
    
    def add_natural_variations(self, text):
        """Add natural language variations"""
        # Academic connectors
        connectors = [
            "Moreover", "Furthermore", "Additionally", "In contrast",
            "Similarly", "Consequently", "Nevertheless", "Notably"
        ]
        
        sentences = text.split('.')
        varied = []
        
        for i, sentence in enumerate(sentences):
            sentence = sentence.strip()
            if not sentence:
                continue
            
            # Sometimes add connectors
            if i > 0 and random.random() < 0.2:
                connector = random.choice(connectors)
                sentence = f"{connector}, {sentence.lower()}"
            
            varied.append(sentence)
        
        return '. '.join(varied) + '.' if varied else text
    
    def clean_text(self, text):
        """Clean and format text"""
        # Remove extra spaces
        text = re.sub(r'\s+', ' ', text)
        text = re.sub(r'\s+([.!?,:;])', r'\1', text)
        
        # Capitalize sentences
        sentences = text.split('. ')
        formatted = []
        for sentence in sentences:
            sentence = sentence.strip()
            if sentence:
                sentence = sentence[0].upper() + sentence[1:] if len(sentence) > 1 else sentence.upper()
                formatted.append(sentence)
        
        result = '. '.join(formatted)
        if not result.endswith(('.', '!', '?')):
            result += '.'
            
        return result

# Initialize humanizer
batch_humanizer = BatchHumanizer()

def process_text_input(text_input, strength):
    """Process single text input"""
    if not text_input or not text_input.strip():
        return "Please enter some text to humanize."
    
    return batch_humanizer.humanize_single_text(text_input, strength.lower())

def process_file_upload(file, strength):
    """Process uploaded file"""
    if file is None:
        return "Please upload a file.", None
    
    try:
        # Read the file
        if file.name.endswith('.txt'):
            with open(file.name, 'r', encoding='utf-8') as f:
                content = f.read()
            
            # Split into paragraphs or sentences for processing
            paragraphs = [p.strip() for p in content.split('\n\n') if p.strip()]
            
            humanized_paragraphs = []
            for para in paragraphs:
                if len(para) > 50:  # Only process substantial paragraphs
                    humanized = batch_humanizer.humanize_single_text(para, strength.lower())
                    humanized_paragraphs.append(humanized)
                else:
                    humanized_paragraphs.append(para)
            
            result = '\n\n'.join(humanized_paragraphs)
            
            # Save to new file
            output_filename = file.name.replace('.txt', '_humanized.txt')
            with open(output_filename, 'w', encoding='utf-8') as f:
                f.write(result)
            
            return result, output_filename
            
        elif file.name.endswith('.csv'):
            df = pd.read_csv(file.name)
            
            # Assume the text column is named 'text' or the first column
            text_column = 'text' if 'text' in df.columns else df.columns[0]
            
            # Humanize each text entry
            df['humanized'] = df[text_column].apply(
                lambda x: batch_humanizer.humanize_single_text(str(x), strength.lower()) if pd.notna(x) else x
            )
            
            # Save to new CSV
            output_filename = file.name.replace('.csv', '_humanized.csv')
            df.to_csv(output_filename, index=False)
            
            return f"Processed {len(df)} entries. Check the 'humanized' column.", output_filename
        
        else:
            return "Unsupported file format. Please upload .txt or .csv files.", None
            
    except Exception as e:
        return f"Error processing file: {str(e)}", None

# Create Gradio interface with tabs
with gr.Blocks(theme="soft", title="AI Text Humanizer Pro") as demo:
    gr.Markdown("""
    # πŸ€–βž‘οΈπŸ‘¨ AI Text Humanizer Pro
    
    **Advanced tool to transform robotic AI-generated text into natural, human-like writing**
    
    Perfect for:
    - πŸ“ Academic papers and essays
    - πŸ“Š Research reports  
    - πŸ“„ Business documents
    - πŸ’Ό Professional content
    - πŸ” Bypassing AI detection tools
    """)
    
    with gr.Tabs():
        # Single Text Tab
        with gr.TabItem("Single Text"):
            gr.Markdown("### Humanize Individual Text")
            
            with gr.Row():
                with gr.Column(scale=2):
                    text_input = gr.Textbox(
                        lines=12,
                        placeholder="Paste your AI-generated text here...",
                        label="Input Text",
                        info="Enter the text you want to humanize"
                    )
                    
                    strength_single = gr.Radio(
                        choices=["Light", "Medium", "Heavy"],
                        value="Medium",
                        label="Humanization Strength"
                    )
                    
                    process_btn = gr.Button("πŸš€ Humanize Text", variant="primary")
                
                with gr.Column(scale=2):
                    text_output = gr.Textbox(
                        lines=12,
                        label="Humanized Output",
                        show_copy_button=True
                    )
            
            # Examples
            gr.Examples(
                examples=[
                    ["The implementation of artificial intelligence algorithms demonstrates significant improvements in computational efficiency and accuracy metrics across various benchmark datasets.", "Medium"],
                    ["Machine learning models exhibit superior performance characteristics when evaluated against traditional statistical approaches in predictive analytics applications.", "Heavy"],
                    ["The research methodology utilized in this study involves comprehensive data collection and analysis procedures to ensure robust and reliable results.", "Light"]
                ],
                inputs=[text_input, strength_single],
                outputs=text_output,
                fn=process_text_input
            )
        
        # Batch Processing Tab
        with gr.TabItem("Batch Processing"):
            gr.Markdown("### Process Files in Batch")
            gr.Markdown("Upload .txt or .csv files to humanize multiple texts at once")
            
            with gr.Row():
                with gr.Column():
                    file_input = gr.File(
                        label="Upload File (.txt or .csv)",
                        file_types=[".txt", ".csv"]
                    )
                    
                    strength_batch = gr.Radio(
                        choices=["Light", "Medium", "Heavy"],
                        value="Medium",
                        label="Humanization Strength"
                    )
                    
                    process_file_btn = gr.Button("πŸ”„ Process File", variant="primary")
                
                with gr.Column():
                    file_output = gr.Textbox(
                        lines=10,
                        label="Processing Results",
                        show_copy_button=True
                    )
                    
                    download_file = gr.File(
                        label="Download Processed File",
                        visible=False
                    )
        
        # Settings Tab
        with gr.TabItem("Settings & Info"):
            gr.Markdown("""
            ### How it works:
            
            1. **Light Humanization**: Basic paraphrasing with minimal changes
            2. **Medium Humanization**: Paraphrasing + vocabulary variations  
            3. **Heavy Humanization**: All techniques + sentence structure changes
            
            ### Features:
            - βœ… Advanced T5-based paraphrasing
            - βœ… Natural vocabulary diversification
            - βœ… Sentence structure optimization
            - βœ… Academic tone preservation
            - βœ… Batch file processing
            - βœ… Multiple output formats
            
            ### Supported Formats:
            - **Text files (.txt)**: Processes paragraph by paragraph
            - **CSV files (.csv)**: Adds 'humanized' column with processed text
            
            ### Tips for best results:
            - Use complete sentences and paragraphs
            - Avoid very short fragments
            - Choose appropriate humanization strength
            - Review output for context accuracy
            """)
    
    # Event handlers
    process_btn.click(
        fn=process_text_input,
        inputs=[text_input, strength_single],
        outputs=text_output
    )
    
    process_file_btn.click(
        fn=process_file_upload,
        inputs=[file_input, strength_batch],
        outputs=[file_output, download_file]
    )

if __name__ == "__main__":
    demo.launch(
        share=False,
        server_name="0.0.0.0",
        server_port=7862,
        debug=True
    )