import streamlit as st import transformers import torch import requests from PIL import Image from transformers import AutoTokenizer, AutoModelForSequenceClassification # Setting the page configurations st.set_page_config( page_title="Fake News Detection App", page_icon="fas fa-exclamation-triangle", layout="wide", initial_sidebar_state="auto") # Load the model and tokenizer tokenizer_name = AutoTokenizer.from_pretrained("jy46604790/Fake-News-Bert-Detect") model_name = AutoModelForSequenceClassification.from_pretrained("jy46604790/Fake-News-Bert-Detect") # Define the CSS style for the app st.markdown( """ """, unsafe_allow_html=True ) # Define the function for detecting fake news @st.cache_resource def detect_fake_news(text): # Load the pipeline. pipeline = transformers.pipeline("text-classification", model=model_name, tokenizer=tokenizer_name) # Predict the sentiment. prediction = pipeline(text) sentiment = prediction[0]["label"] score = prediction[0]["score"] return sentiment, score st.markdown("

A fake news detection app

", unsafe_allow_html=True) st.markdown("

Welcome

", unsafe_allow_html=True) st.markdown("

This is a Fake News Detection App.

", unsafe_allow_html=True) # Get user input text = st.text_input("Enter some text and we'll tell you if it's likely to be fake news or not!") if st.button('Predict'): # Show fake news detection output if text: with st.spinner('Checking if news is Fake...'): label, score = detect_fake_news(text) if label == "FAKE": st.error(f"The text is likely to be fake news with a confidence score of {score*100:.2f}%!") else: st.success(f"The text is likely to be genuine with a confidence score of {score*100:.2f}%!") else: with st.spinner('Checking if news is Fake...'): st.warning("Please enter some text to detect fake news.")