File size: 12,304 Bytes
5c6141b
c67397a
5c6141b
c67397a
11d72cb
5c6141b
 
11d72cb
 
 
5c6141b
11d72cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5c6141b
11d72cb
 
5c6141b
0da07af
 
 
5c6141b
0da07af
5c6141b
 
 
 
 
 
 
0da07af
5c6141b
 
 
 
 
 
 
 
 
 
 
 
11d72cb
4835d52
11d72cb
4835d52
 
 
 
 
 
 
11d72cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b8cabae
11d72cb
789ec36
11d72cb
b8cabae
11d72cb
 
b8cabae
 
789ec36
88ce90f
789ec36
 
 
 
 
 
 
 
 
b8cabae
 
789ec36
 
 
 
 
 
 
d1daad9
 
 
 
 
789ec36
 
 
d1daad9
b8cabae
 
d1daad9
 
 
b8cabae
 
789ec36
 
 
 
 
 
 
 
b8cabae
 
789ec36
 
 
 
 
 
b8cabae
 
789ec36
 
 
 
b8cabae
 
789ec36
 
 
 
d1daad9
 
789ec36
d1daad9
 
 
 
 
 
789ec36
b8cabae
 
 
 
 
 
 
 
 
 
11d72cb
b8cabae
789ec36
11d72cb
 
 
 
 
 
 
b8cabae
 
 
 
 
 
 
11d72cb
 
 
b8cabae
d1daad9
b8cabae
11d72cb
 
 
 
 
 
 
 
 
 
 
 
 
 
b8cabae
11d72cb
 
 
 
 
 
 
b8cabae
11d72cb
 
 
 
 
 
 
 
 
 
 
b8cabae
11d72cb
 
 
 
 
 
 
 
 
 
 
 
b8cabae
11d72cb
b8cabae
 
 
 
 
 
11d72cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b8cabae
11d72cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
# Use TensorFlow backend for better compatibility with existing models
import os
os.environ["KERAS_BACKEND"] = "tensorflow"

import gradio as gr
import tensorflow as tf
from tensorflow import keras
import numpy as np
from PIL import Image
from tensorflow.keras.applications.efficientnet_v2 import preprocess_input
from huggingface_hub import hf_hub_download

# Class names for the 5 skin conditions
CLASS_NAMES = [
    'Atopic Dermatitis',
    'Eczema', 
    'Psoriasis',
    'Seborrheic Keratoses',
    'Tinea Ringworm Candidiasis'
]

# Class descriptions
CLASS_DESCRIPTIONS = {
    'Atopic Dermatitis': 'A chronic inflammatory skin condition causing dry, itchy patches',
    'Eczema': 'Inflammatory skin condition causing red, itchy, and inflamed patches',
    'Psoriasis': 'Autoimmune condition causing thick, scaly patches on the skin',
    'Seborrheic Keratoses': 'Common benign (non-cancerous) skin growths',
    'Tinea Ringworm Candidiasis': 'Fungal skin infections causing circular, scaly patches'
}

class DermaAIModel:
    def __init__(self):
        self.model = None
        self.load_model()
    
    def load_model(self):
        """Load the DermaAI model from Hugging Face Hub using traditional approach"""
        try:
            print("πŸ”„ Loading DermaAI model from Hugging Face...")
            
            # Get authentication token from environment variable only (secure)
            hf_token = os.getenv("HF_TOKEN")
            
            # Download model file using HuggingFace Hub
            if hf_token:
                print("πŸ” Using authentication token...")
                model_path = hf_hub_download(
                    repo_id="Siraja704/DermaAI",
                    filename="DermaAI.keras",
                    token=hf_token,
                    cache_dir="./model_cache"
                )
            else:
                print("πŸ“‚ Trying without authentication...")
                model_path = hf_hub_download(
                    repo_id="Siraja704/DermaAI",
                    filename="DermaAI.keras",
                    cache_dir="./model_cache"
                )
            
            # Load the model using TensorFlow/Keras
            print(f"πŸ“ Loading model from: {model_path}")
            self.model = keras.models.load_model(model_path)
            print("βœ… Model loaded successfully!")
            
        except Exception as e:
            error_msg = str(e)
            print(f"❌ Error loading model: {e}")
            if "401" in error_msg or "gated" in error_msg.lower() or "restricted" in error_msg.lower():
                print("\nπŸ” AUTHENTICATION ERROR:")
                print("- The model repository is private/gated")
                print("- Please add your HF_TOKEN to the Space secrets")
                print("- Go to Space Settings > Repository secrets")
                print("- Add: HF_TOKEN = your_huggingface_token")
                print("- Make sure the token has access to Siraja704/DermaAI\n")
            raise e
    
    def predict(self, image):
        """Make prediction on the input image"""
        if self.model is None:
            return {"error": "Model not loaded"}
        
        try:
            # Preprocess image
            if image is None:
                return {"error": "No image provided"}
            
            # Convert to RGB if necessary
            if image.mode != 'RGB':
                image = image.convert('RGB')
            
            # Resize to model input size
            image_resized = image.resize((224, 224))
            
            # Convert to numpy array and preprocess
            image_array = np.array(image_resized)
            image_array = preprocess_input(image_array)
            image_array = np.expand_dims(image_array, axis=0)
            
            # Make prediction
            predictions = self.model.predict(image_array, verbose=0)
            
            # Get results
            predicted_class_idx = np.argmax(predictions[0])
            confidence = float(predictions[0][predicted_class_idx])
            
            # Prepare results dictionary for Gradio
            results = {}
            for i, class_name in enumerate(CLASS_NAMES):
                results[class_name] = float(predictions[0][i])
            
            return results
            
        except Exception as e:
            print(f"❌ Error during prediction: {e}")
            return {"error": f"Prediction failed: {str(e)}"}

# Initialize model
print("πŸš€ Initializing DermaAI...")
derma_model = DermaAIModel()

def predict_skin_condition(image):
    """Wrapper function for Gradio interface"""
    if image is None:
        return {"error": "Please upload an image"}
    
    return derma_model.predict(image)

def get_medical_advice(image):
    """Provide medical advice based on prediction"""
    if image is None:
        return "Please upload an image first."
    
    results = derma_model.predict(image)
    
    if "error" in results:
        return results["error"]
    
    # Find the top prediction
    top_prediction = max(results, key=results.get)
    confidence = results[top_prediction] * 100
    
    # Generate advice based on confidence
    advice = f"**Predicted Condition:** {top_prediction}\n\n"
    advice += f"**Confidence:** {confidence:.1f}%\n\n"
    advice += f"**Description:** {CLASS_DESCRIPTIONS.get(top_prediction, 'No description available')}\n\n"
    
    if confidence < 30:
        advice += "⚠️ **Low Confidence Warning:** The AI model has low confidence in this prediction. Please retake the image with better lighting and focus, or consult a healthcare professional."
    elif confidence < 60:
        advice += "πŸ” **Moderate Confidence:** This is a preliminary assessment. Consider consulting with a healthcare professional for accurate diagnosis."
    else:
        advice += "βœ… **High Confidence:** The model shows high confidence, but this is still a preliminary assessment."
    
    advice += "\n\nπŸ₯ **Important Medical Disclaimer:** This AI tool is for educational purposes only and should not replace professional medical diagnosis. Always consult qualified healthcare professionals for proper medical evaluation and treatment."
    
    return advice

# Custom CSS for better styling with dark/light mode support
custom_css = """
/* Simple blue theme that works in both light and dark modes */
.gradio-container {
    font-family: 'Inter', 'Segoe UI', 'Roboto', sans-serif;
    max-width: 1200px;
    margin: 0 auto;
}

/* All text blue for universal visibility */
.gradio-container * {
    color: #2196f3 !important;
}

/* Main heading - darker blue */
.main-title h1 {
    color: #1565c0 !important;
    font-size: 2.5rem !important;
    font-weight: 700 !important;
    text-align: center !important;
}

.main-title p {
    color: #1976d2 !important;
    font-size: 1.2rem !important;
    text-align: center !important;
}

/* Section headings - medium blue */
.gradio-container h1,
.gradio-container h2,
.gradio-container h3,
.gradio-container h4,
.gradio-container h5,
.gradio-container h6,
.section-header {
    color: #1976d2 !important;
    font-weight: 600 !important;
}

.section-header {
    font-size: 1.4rem !important;
    margin-bottom: 15px !important;
}

/* Regular text - lighter blue */
.gradio-container p,
.gradio-container span,
.gradio-container div,
.gradio-container li,
.gradio-container label,
.gradio-container button {
    color: #2196f3 !important;
}

/* Special components */
.gradio-container .gr-markdown,
.gradio-container .gr-markdown *,
.gradio-container .gr-label-text,
.gradio-container .gr-input-label {
    color: #2196f3 !important;
}

/* Icons and SVG elements */
.gradio-container svg {
    fill: #2196f3 !important;
    stroke: #2196f3 !important;
}

/* Links */
.gradio-container a {
    color: #1565c0 !important;
    text-decoration: underline;
}

/* Simple styling without backgrounds */
.medical-disclaimer,
.info-box,
.about-section {
    border-radius: 8px;
    padding: 15px;
    margin: 10px 0;
    border: 1px solid #2196f3;
}

.conditions-grid {
    display: grid;
    grid-template-columns: repeat(auto-fit, minmax(300px, 1fr));
    gap: 15px;
    margin-top: 15px;
}

.condition-item {
    padding: 15px;
    border-radius: 8px;
    border: 1px solid #2196f3;
}
"""

# Create Gradio interface
with gr.Blocks(
    css=custom_css,
    title="DermaAI - Skin Disease Classification",
    theme=gr.themes.Base().set(
        button_primary_background_fill="*primary_500",
        button_primary_background_fill_hover="*primary_600",
        button_primary_text_color="white",
        block_background_fill="*background_fill_primary",
        body_background_fill="*background_fill_primary",
    )
) as demo:
    
    gr.HTML("""
    <div class="main-title">
        <h1>πŸ₯ DermaAI - Skin Disease Classification</h1>
        <p>AI-powered skin condition analysis using deep learning</p>
    </div>
    """)
    
    gr.HTML("""
    <div class="medical-disclaimer">
        <h3>βš•οΈ Important Medical Disclaimer</h3>
        <p><strong>This AI tool is for educational and research purposes only.</strong> 
        It should not be used as a substitute for professional medical diagnosis or treatment. 
        Always consult with qualified healthcare professionals for proper medical evaluation.</p>
    </div>
    """)
    
    with gr.Row():
        with gr.Column(scale=1):
            gr.HTML("<h3 class='section-header'>πŸ“Έ Upload Skin Image</h3>")
            input_image = gr.Image(
                type="pil",
                label="Upload a clear image of the skin condition",
                height=400
            )
            
            gr.HTML("""
            <div class="info-box">
                <h4>πŸ“‹ Image Guidelines:</h4>
                <ul>
                    <li>Use good lighting and focus</li>
                    <li>Ensure the affected area is clearly visible</li>
                    <li>Avoid blurry or dark images</li>
                    <li>JPG, PNG formats supported</li>
                </ul>
            </div>
            """)
        
        with gr.Column(scale=1):
            gr.HTML("<h3 class='section-header'>πŸ” Analysis Results</h3>")
            
            prediction_output = gr.Label(
                label="Prediction Confidence Scores",
                num_top_classes=5
            )
            
            medical_advice = gr.Markdown(
                label="Medical Assessment",
                value="Upload an image to see the analysis..."
            )
    
    gr.HTML("""
    <div class="info-box">
        <h3>🩺 Supported Skin Conditions</h3>
        <div class="conditions-grid">
            <div class="condition-item"><strong>Atopic Dermatitis:</strong> Chronic inflammatory skin condition</div>
            <div class="condition-item"><strong>Eczema:</strong> Red, itchy, inflamed skin patches</div>
            <div class="condition-item"><strong>Psoriasis:</strong> Thick, scaly skin patches</div>
            <div class="condition-item"><strong>Seborrheic Keratoses:</strong> Benign skin growths</div>
            <div class="condition-item"><strong>Tinea Ringworm Candidiasis:</strong> Fungal skin infections</div>
        </div>
    </div>
    """)
    
    # Set up the interface interactions
    input_image.change(
        fn=predict_skin_condition,
        inputs=input_image,
        outputs=prediction_output
    )
    
    input_image.change(
        fn=get_medical_advice,
        inputs=input_image,
        outputs=medical_advice
    )
    
    gr.HTML("""
    <div class="about-section">
        <h3>πŸ“š About DermaAI</h3>
        <p>DermaAI is built using EfficientNetV2 architecture and trained on dermatological images. 
        The model analyzes skin images and provides confidence scores for 5 different skin conditions.</p>
        <p><strong>Model:</strong> <a href="https://huggingface.co/Siraja704/DermaAI" target="_blank">Siraja704/DermaAI</a></p>
        <p><strong>Framework:</strong> TensorFlow/Keras | <strong>Architecture:</strong> EfficientNetV2</p>
    </div>
    """)

# Launch the interface
if __name__ == "__main__":
    demo.launch(
        server_name="0.0.0.0",
        server_port=7860,
        share=False
    )