import gradio as gr from gradio_imageslider import ImageSlider from loadimg import load_img import spaces from transformers import AutoModelForImageSegmentation import torch from torchvision import transforms from PIL import Image torch.set_float32_matmul_precision(["high", "highest"][0]) birefnet = AutoModelForImageSegmentation.from_pretrained( "ZhengPeng7/BiRefNet", trust_remote_code=True ) birefnet.to("cpu") transform_image = transforms.Compose( [ transforms.Resize((1024, 1024)), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), ] ) def fn(image): im = load_img(image, output_type="pil") im = im.convert("RGB") origin = im.copy() image = process(im) return image def process(image): image_size = image.size input_images = transform_image(image).unsqueeze(0).to("cpu") # Prediction with torch.no_grad(): preds = birefnet(input_images)[-1].sigmoid().cpu() pred = preds[0].squeeze() pred_pil = transforms.ToPILImage()(pred) mask = pred_pil.resize(image_size) white_background = Image.new("RGBA", image_size, (255, 255, 255, 255)) image.putalpha(mask) combined = Image.alpha_composite(white_background, image) return combined def process_file(f): name_path = f.rsplit(".",1)[0]+".jpeg" im = load_img(f, output_type="pil") im = im.convert("RGB") transparent = process(im) rgb_image = transparent.convert("RGB") # Ensure the final image is in RGB mode for JPEG rgb_image.save(name_path) return name_path slider1 = gr.Image() slider2 = ImageSlider(label="birefnet", type="pil") image = gr.Image(label="Upload an image") image2 = gr.Image(label="Upload an image",type="filepath") text = gr.Textbox(label="Paste an image URL") png_file = gr.File(label="output jpeg file") chameleon = load_img("butterfly.jpg", output_type="pil") url = "https://hips.hearstapps.com/hmg-prod/images/gettyimages-1229892983-square.jpg" tab3 = gr.Interface(process_file, inputs=image2, outputs=png_file, examples=["butterfly.jpg"], api_name="png") demo = gr.TabbedInterface( [tab3], ["jpeg"], title="Na Na" ) if __name__ == "__main__": demo.launch(share=True)