Spaces:
Sleeping
Sleeping
File size: 10,838 Bytes
8bf526a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 |
import streamlit as st
import os
import time
from utils import fetch_news, analyze_sentiment, extract_topics, generate_tts
import plotly.express as px
import warnings
warnings.filterwarnings("ignore", category=UserWarning)
# Add custom CSS
st.markdown("""
<style>
h1, .stTitle {color: #2E86C1; font-size: 2.5em; font-weight: bold;}
h2, .stSubheader {color: #1A5276; font-weight: bold;}
.stButton>button {background-color: #3498DB; color: white; border-radius: 5px; padding: 0.5em 1em;}
.stButton>button:hover {background-color: #2E86C1;}
.sentiment-positive {color: green; font-weight: bold;}
.sentiment-negative {color: red; font-weight: bold;}
.sentiment-neutral {color: gray; font-weight: bold;}
.sidebar .sidebar-content {position: sticky; top: 50%; padding: 10px;}
</style>
""", unsafe_allow_html=True)
st.title("News Summarizer and Sentiment Analyzer")
company_name = st.text_input("Enter a company name to get a sentiment report of its recent news.", placeholder="e.g., Google, Meta", value="")
if st.button("Analyze"):
with st.spinner("Fetching and analyzing news articles..."):
time.sleep(1)
articles_data = fetch_news(company_name)
if not articles_data:
st.error(f"No articles found for {company_name}. Check logs for details.")
else:
articles = []
sentiments = {"Positive": 0, "Negative": 0, "Neutral": 0}
positive_articles = []
negative_articles = []
neutral_articles = []
for article in articles_data:
summary = article["summary"].strip() or article["title"].split(" - ")[0].strip()
source = article["title"].split(" - ")[-1].strip() if " - " in article["title"] else ""
if source in summary:
summary = summary.replace(source, "").strip()
summary = f"{summary.rstrip(' -')} - {source}"
sentiment = analyze_sentiment(summary)
topics = extract_topics(summary)
sentiments[sentiment] += 1
title = article["title"].split(" - ")[0].strip()
if sentiment == "Positive":
positive_articles.append(title)
elif sentiment == "Negative":
negative_articles.append(title)
else:
neutral_articles.append(title)
articles.append({
"Title": article["title"],
"Summary": summary,
"Sentiment": sentiment,
"Topics": topics,
"Link": article["link"],
"PubDate": article["pub_date"]
})
import random
detailed_comparisons = [f"- News {i + 1} {article['Sentiment'].lower()}ly discusses {', '.join(article['Topics'])}"
for i, article in enumerate(articles)]
dominant_sentiment = max(sentiments, key=sentiments.get)
trends = f"{company_name} News Trends: {dominant_sentiment}"
total_articles = sum(sentiments.values())
sentiment_count = f"{sentiments['Positive']} positive, {sentiments['Negative']} negative, {sentiments['Neutral']} neutral"
intro_phrases = [
f"Spanning {total_articles} recent reports, the narrative surrounding {company_name} tilts {dominant_sentiment.lower()}, with {sentiment_count}.",
f"Across {total_articles} articles in recent coverage, {company_name}’s story emerges as predominantly {dominant_sentiment.lower()}, reflecting {sentiment_count}.",
f"Drawing from {total_articles} latest publications, {company_name}’s news landscape leans {dominant_sentiment.lower()}, underscored by {sentiment_count}."
]
positive_phrases = [
f"With {len(positive_articles)} favorable accounts, {company_name} demonstrates notable progress, exemplified by '{random.choice(positive_articles) if positive_articles else 'no specific examples available'}'.",
f"Boasting {len(positive_articles)} positive developments, {company_name} showcases strength, as evidenced in '{random.choice(positive_articles) if positive_articles else 'no notable instances'}'.",
f"Highlighted by {len(positive_articles)} encouraging reports, {company_name} is forging ahead, with '{random.choice(positive_articles) if positive_articles else 'no standout reports'}' standing out."
]
negative_phrases = [
f"However, {len(negative_articles)} troubling narratives raise concerns, including '{random.choice(negative_articles) if negative_articles else 'no specific concerns noted'}'.",
f"Yet, {len(negative_articles)} adverse reports signal challenges, such as '{random.choice(negative_articles) if negative_articles else 'no highlighted issues'}'.",
f"Nevertheless, {len(negative_articles)} concerning stories cast a shadow, notably '{random.choice(negative_articles) if negative_articles else 'no notable setbacks'}'."
]
neutral_phrases = [
f"Additionally, {len(neutral_articles)} impartial updates provide context, such as '{random.choice(neutral_articles) if neutral_articles else 'no neutral updates available'}'.",
f"Meanwhile, {len(neutral_articles)} balanced accounts offer insight, including '{random.choice(neutral_articles) if neutral_articles else 'no balanced reports'}'.",
f"Furthermore, {len(neutral_articles)} objective pieces contribute details, like '{random.choice(neutral_articles) if neutral_articles else 'no objective details'}'."
]
outlook_phrases_positive = [
f"In summary, {company_name} appears poised for a favorable trajectory.",
f"All told, {company_name} stands on the cusp of a promising future.",
f"Ultimately, {company_name} is positioned for an optimistic course ahead."
]
outlook_phrases_negative = [
f"In conclusion, {company_name} confronts a challenging path forward.",
f"Overall, {company_name} navigates a formidable road ahead.",
f"To conclude, {company_name} faces a demanding horizon."
]
outlook_phrases_mixed = [
f"In the final analysis, {company_name} balances opportunity and uncertainty.",
f"On balance, {company_name} presents a complex outlook moving forward.",
f"Ultimately, {company_name} reflects a blend of prospects and hurdles."
]
final_text = random.choice(intro_phrases) + " "
if positive_articles:
final_text += random.choice(positive_phrases) + " "
if negative_articles:
final_text += random.choice(negative_phrases) + " "
if neutral_articles:
final_text += random.choice(neutral_phrases) + " "
if sentiments["Positive"] > sentiments["Negative"]:
final_text += random.choice(outlook_phrases_positive)
elif sentiments["Negative"] > sentiments["Positive"]:
final_text += random.choice(outlook_phrases_negative)
else:
final_text += random.choice(outlook_phrases_mixed)
st.session_state.result = {
"Company": company_name,
"Articles": articles,
"Comparative Sentiment Score": {
"Sentiment Distribution": f"Positive: {sentiments['Positive']}, Negative: {sentiments['Negative']}, Neutral: {sentiments['Neutral']}",
"Trends": trends,
"Detailed Comparisons": "\n".join(detailed_comparisons)
},
"Final Sentiment Analysis": final_text.strip()
}
if "result" in st.session_state:
result = st.session_state.result
if "error" in result:
st.error(result["error"])
else:
dist = result['Comparative Sentiment Score']['Sentiment Distribution']
sentiment_counts = {
"Positive": int(dist.split("Positive: ")[1].split(",")[0]),
"Negative": int(dist.split("Negative: ")[1].split(",")[0]),
"Neutral": int(dist.split("Neutral: ")[1])
}
fig = px.pie(
values=list(sentiment_counts.values()),
names=list(sentiment_counts.keys()),
title="Sentiment Distribution",
color_discrete_map={"Positive": "green", "Negative": "red", "Neutral": "gray"},
width=300,
height=300
)
fig.update_layout(margin=dict(t=40, b=0, l=0, r=0))
st.sidebar.plotly_chart(fig, use_container_width=True)
st.subheader(f"Analysis for {result['Company']}")
for i, article in enumerate(result["Articles"], 1):
st.write(f"**News {i}:** {article['PubDate']} [Read full article]({article['Link']})")
st.write(f"Summary: {article['Summary']}")
sentiment_class = f"sentiment-{article['Sentiment'].lower()}"
st.markdown(f"Sentiment: <span class='{sentiment_class}'>{article['Sentiment']}</span>", unsafe_allow_html=True)
st.write("")
st.subheader("Comparative Sentiment Analysis")
st.write("Detailed Comparisons:")
st.write(f"Sentiment Distribution: {result['Comparative Sentiment Score']['Sentiment Distribution']}")
st.markdown(f"**{result['Comparative Sentiment Score']['Trends']}**", unsafe_allow_html=True)
st.markdown(result["Comparative Sentiment Score"]["Detailed Comparisons"], unsafe_allow_html=True)
st.subheader("Final Sentiment Analysis")
st.write(result["Final Sentiment Analysis"])
language = st.selectbox("Select Audio Language", ["Hindi", "English"])
if st.button("Generate News Audio"):
with st.spinner("Generating audio..."):
audio_buffer = generate_tts(result["Final Sentiment Analysis"], 'hi' if language == "Hindi" else 'en')
if audio_buffer:
st.audio(audio_buffer, format="audio/mp3")
else:
st.error("Failed to generate audio. Check terminal logs.")
st.markdown("""
<p style="font-size: small; color: grey; text-align: center;">
Developed By: Krishna Prakash
<a href="https://www.linkedin.com/in/krishnaprakash-profile/" target="_blank">
<img src="https://img.icons8.com/ios-filled/30/0077b5/linkedin.png" alt="LinkedIn" style="vertical-align: middle; margin: 0 5px;"/>
</a>
</p>
""", unsafe_allow_html=True) |