File size: 10,838 Bytes
8bf526a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
import streamlit as st
import os
import time
from utils import fetch_news, analyze_sentiment, extract_topics, generate_tts
import plotly.express as px
import warnings
warnings.filterwarnings("ignore", category=UserWarning)

# Add custom CSS
st.markdown("""
    <style>
    h1, .stTitle {color: #2E86C1; font-size: 2.5em; font-weight: bold;}
    h2, .stSubheader {color: #1A5276; font-weight: bold;}
    .stButton>button {background-color: #3498DB; color: white; border-radius: 5px; padding: 0.5em 1em;}
    .stButton>button:hover {background-color: #2E86C1;}
    .sentiment-positive {color: green; font-weight: bold;}
    .sentiment-negative {color: red; font-weight: bold;}
    .sentiment-neutral {color: gray; font-weight: bold;}
    .sidebar .sidebar-content {position: sticky; top: 50%; padding: 10px;}
    </style>
""", unsafe_allow_html=True)

st.title("News Summarizer and Sentiment Analyzer")

company_name = st.text_input("Enter a company name to get a sentiment report of its recent news.", placeholder="e.g., Google, Meta", value="")

if st.button("Analyze"):
    with st.spinner("Fetching and analyzing news articles..."):
        time.sleep(1)
        articles_data = fetch_news(company_name)
        if not articles_data:
            st.error(f"No articles found for {company_name}. Check logs for details.")
        else:
            articles = []
            sentiments = {"Positive": 0, "Negative": 0, "Neutral": 0}
            positive_articles = []
            negative_articles = []
            neutral_articles = []

            for article in articles_data:
                summary = article["summary"].strip() or article["title"].split(" - ")[0].strip()
                source = article["title"].split(" - ")[-1].strip() if " - " in article["title"] else ""
                if source in summary:
                    summary = summary.replace(source, "").strip()
                summary = f"{summary.rstrip(' -')} - {source}"

                sentiment = analyze_sentiment(summary)
                topics = extract_topics(summary)
                sentiments[sentiment] += 1

                title = article["title"].split(" - ")[0].strip()
                if sentiment == "Positive":
                    positive_articles.append(title)
                elif sentiment == "Negative":
                    negative_articles.append(title)
                else:
                    neutral_articles.append(title)

                articles.append({
                    "Title": article["title"],
                    "Summary": summary,
                    "Sentiment": sentiment,
                    "Topics": topics,
                    "Link": article["link"],
                    "PubDate": article["pub_date"]
                })

            import random
            detailed_comparisons = [f"- News {i + 1} {article['Sentiment'].lower()}ly discusses {', '.join(article['Topics'])}"
                                    for i, article in enumerate(articles)]
            dominant_sentiment = max(sentiments, key=sentiments.get)
            trends = f"{company_name} News Trends: {dominant_sentiment}"

            total_articles = sum(sentiments.values())
            sentiment_count = f"{sentiments['Positive']} positive, {sentiments['Negative']} negative, {sentiments['Neutral']} neutral"

            intro_phrases = [
                f"Spanning {total_articles} recent reports, the narrative surrounding {company_name} tilts {dominant_sentiment.lower()}, with {sentiment_count}.",
                f"Across {total_articles} articles in recent coverage, {company_name}’s story emerges as predominantly {dominant_sentiment.lower()}, reflecting {sentiment_count}.",
                f"Drawing from {total_articles} latest publications, {company_name}’s news landscape leans {dominant_sentiment.lower()}, underscored by {sentiment_count}."
            ]
            positive_phrases = [
                f"With {len(positive_articles)} favorable accounts, {company_name} demonstrates notable progress, exemplified by '{random.choice(positive_articles) if positive_articles else 'no specific examples available'}'.",
                f"Boasting {len(positive_articles)} positive developments, {company_name} showcases strength, as evidenced in '{random.choice(positive_articles) if positive_articles else 'no notable instances'}'.",
                f"Highlighted by {len(positive_articles)} encouraging reports, {company_name} is forging ahead, with '{random.choice(positive_articles) if positive_articles else 'no standout reports'}' standing out."
            ]
            negative_phrases = [
                f"However, {len(negative_articles)} troubling narratives raise concerns, including '{random.choice(negative_articles) if negative_articles else 'no specific concerns noted'}'.",
                f"Yet, {len(negative_articles)} adverse reports signal challenges, such as '{random.choice(negative_articles) if negative_articles else 'no highlighted issues'}'.",
                f"Nevertheless, {len(negative_articles)} concerning stories cast a shadow, notably '{random.choice(negative_articles) if negative_articles else 'no notable setbacks'}'."
            ]
            neutral_phrases = [
                f"Additionally, {len(neutral_articles)} impartial updates provide context, such as '{random.choice(neutral_articles) if neutral_articles else 'no neutral updates available'}'.",
                f"Meanwhile, {len(neutral_articles)} balanced accounts offer insight, including '{random.choice(neutral_articles) if neutral_articles else 'no balanced reports'}'.",
                f"Furthermore, {len(neutral_articles)} objective pieces contribute details, like '{random.choice(neutral_articles) if neutral_articles else 'no objective details'}'."
            ]
            outlook_phrases_positive = [
                f"In summary, {company_name} appears poised for a favorable trajectory.",
                f"All told, {company_name} stands on the cusp of a promising future.",
                f"Ultimately, {company_name} is positioned for an optimistic course ahead."
            ]
            outlook_phrases_negative = [
                f"In conclusion, {company_name} confronts a challenging path forward.",
                f"Overall, {company_name} navigates a formidable road ahead.",
                f"To conclude, {company_name} faces a demanding horizon."
            ]
            outlook_phrases_mixed = [
                f"In the final analysis, {company_name} balances opportunity and uncertainty.",
                f"On balance, {company_name} presents a complex outlook moving forward.",
                f"Ultimately, {company_name} reflects a blend of prospects and hurdles."
            ]

            final_text = random.choice(intro_phrases) + " "
            if positive_articles:
                final_text += random.choice(positive_phrases) + " "
            if negative_articles:
                final_text += random.choice(negative_phrases) + " "
            if neutral_articles:
                final_text += random.choice(neutral_phrases) + " "
            if sentiments["Positive"] > sentiments["Negative"]:
                final_text += random.choice(outlook_phrases_positive)
            elif sentiments["Negative"] > sentiments["Positive"]:
                final_text += random.choice(outlook_phrases_negative)
            else:
                final_text += random.choice(outlook_phrases_mixed)

            st.session_state.result = {
                "Company": company_name,
                "Articles": articles,
                "Comparative Sentiment Score": {
                    "Sentiment Distribution": f"Positive: {sentiments['Positive']}, Negative: {sentiments['Negative']}, Neutral: {sentiments['Neutral']}",
                    "Trends": trends,
                    "Detailed Comparisons": "\n".join(detailed_comparisons)
                },
                "Final Sentiment Analysis": final_text.strip()
            }

if "result" in st.session_state:
    result = st.session_state.result
    if "error" in result:
        st.error(result["error"])
    else:
        dist = result['Comparative Sentiment Score']['Sentiment Distribution']
        sentiment_counts = {
            "Positive": int(dist.split("Positive: ")[1].split(",")[0]),
            "Negative": int(dist.split("Negative: ")[1].split(",")[0]),
            "Neutral": int(dist.split("Neutral: ")[1])
        }
        fig = px.pie(
            values=list(sentiment_counts.values()),
            names=list(sentiment_counts.keys()),
            title="Sentiment Distribution",
            color_discrete_map={"Positive": "green", "Negative": "red", "Neutral": "gray"},
            width=300,
            height=300
        )
        fig.update_layout(margin=dict(t=40, b=0, l=0, r=0))
        st.sidebar.plotly_chart(fig, use_container_width=True)

        st.subheader(f"Analysis for {result['Company']}")
        for i, article in enumerate(result["Articles"], 1):
            st.write(f"**News {i}:** {article['PubDate']} [Read full article]({article['Link']})")
            st.write(f"Summary: {article['Summary']}")
            sentiment_class = f"sentiment-{article['Sentiment'].lower()}"
            st.markdown(f"Sentiment: <span class='{sentiment_class}'>{article['Sentiment']}</span>", unsafe_allow_html=True)
            st.write("")

        st.subheader("Comparative Sentiment Analysis")
        st.write("Detailed Comparisons:")
        st.write(f"Sentiment Distribution: {result['Comparative Sentiment Score']['Sentiment Distribution']}")
        st.markdown(f"**{result['Comparative Sentiment Score']['Trends']}**", unsafe_allow_html=True)
        st.markdown(result["Comparative Sentiment Score"]["Detailed Comparisons"], unsafe_allow_html=True)

        st.subheader("Final Sentiment Analysis")
        st.write(result["Final Sentiment Analysis"])

        language = st.selectbox("Select Audio Language", ["Hindi", "English"])
        if st.button("Generate News Audio"):
            with st.spinner("Generating audio..."):
                audio_buffer = generate_tts(result["Final Sentiment Analysis"], 'hi' if language == "Hindi" else 'en')
                if audio_buffer:
                    st.audio(audio_buffer, format="audio/mp3")
                else:
                    st.error("Failed to generate audio. Check terminal logs.")

    st.markdown("""
        <p style="font-size: small; color: grey; text-align: center;">
            Developed By: Krishna Prakash
            <a href="https://www.linkedin.com/in/krishnaprakash-profile/" target="_blank">
                <img src="https://img.icons8.com/ios-filled/30/0077b5/linkedin.png" alt="LinkedIn" style="vertical-align: middle; margin: 0 5px;"/>
            </a>
        </p>
    """, unsafe_allow_html=True)