File size: 2,077 Bytes
8bea7a5
0080558
 
 
 
 
fb504f2
 
 
 
 
 
 
0080558
423e505
 
 
 
 
 
 
 
 
 
 
a42bd42
423e505
0080558
 
fe0061f
 
 
0080558
a42bd42
 
 
0080558
 
 
 
fb504f2
 
 
 
 
 
0080558
 
fb504f2
 
 
 
 
fe0061f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
# train_model.py
from sklearn.ensemble import RandomForestClassifier
from joblib import dump
import pandas as pd

# Load the enhanced dataset
try:
    df = pd.read_csv("enhanced_mantle_training.csv")  # Ensure the path to the CSV file is correct
    print("Dataset loaded successfully!")
    print(df.head())  # This will print the first few rows of the data for verification
except FileNotFoundError:
    print("Error: 'enhanced_mantle_training.csv' not found. Please check the file path.")
    exit()

# Ensure that the necessary columns are present in the dataset
required_columns = ["temperature", "duration", "risk_level"]
if not all(col in df.columns for col in required_columns):
    print(f"Error: Missing one or more required columns. Ensure the dataset contains {required_columns}.")
    exit()

# Check for any missing values in the data
if df.isnull().any().any():
    print("Warning: Dataset contains missing values. Please clean the data.")
    # Optionally, you can fill missing values or drop rows with missing data
    df = df.dropna()  # Drop rows with missing data, or use df.fillna() to fill missing values
    print("Missing values have been dropped.")

# Prepare the features (temperature, duration) and target (risk_level)
X = df[["temperature", "duration"]]  # Features: temperature and duration

# Convert risk_level to numeric for training the model (Low=0, Moderate=1, High=2)
y = df["risk_level"].map({"Low": 0, "Moderate": 1, "High": 2})  # Target: risk_level

# Check if data is being prepared correctly
print(f"Prepared {len(X)} rows for training.")

# Initialize the Random Forest model
model = RandomForestClassifier()

# Train the model
try:
    model.fit(X, y)
    print("Model trained successfully!")
except Exception as e:
    print(f"Error during model training: {e}")
    exit()

# Save the trained model to a file
try:
    dump(model, "heating_model_with_risk_score.pkl")
    print("Model training complete! Model saved as 'heating_model_with_risk_score.pkl'.")
except Exception as e:
    print(f"Error saving the model: {e}")
    exit()