Spaces:
Sleeping
Sleeping
import pandas as pd | |
import numpy as np | |
from datetime import datetime | |
# Adjust the data generation function as per the new conditions | |
def generate_enhanced_data_v2(num_samples=1000): | |
data = [] | |
for _ in range(num_samples): | |
# Randomly generate temperature and duration | |
temp = np.random.randint(50, 201) # Temperature between 50 and 200°C | |
duration = np.random.randint(5, 120) # Duration between 5 and 120 minutes | |
# Assign risk level and alert based on conditions | |
if temp <= 150 and duration <= 30: | |
risk_level = "Low" | |
risk_score = np.random.uniform(0, 40) # Low risk | |
alert = "Safe" | |
elif 150 < temp <= 180 and 30 < duration <= 60: | |
risk_level = "Moderate" | |
risk_score = np.random.uniform(40, 70) # Moderate risk | |
alert = "Risk" | |
else: | |
risk_level = "High" | |
risk_score = np.random.uniform(70, 100) # High risk | |
alert = "High Risk" | |
# Add timestamp as current time | |
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S") | |
# Append to data | |
data.append([temp, duration, risk_level, risk_score, alert, timestamp]) | |
# Create DataFrame | |
df = pd.DataFrame(data, columns=["temperature", "duration", "risk_level", "risk_score", "alert", "timestamp"]) | |
return df | |
# Generate the updated dataset with adjusted conditions | |
df_v2 = generate_enhanced_data_v2(1000) | |
# Save to CSV | |
df_v2.to_csv("enhanced_mantle_training.csv", index=False) | |
print("Data generation complete! Dataset saved as 'enhanced_mantle_training.csv'.") |