import pandas as pd import numpy as np from datetime import datetime # Adjust the data generation function as per the new conditions def generate_enhanced_data_v2(num_samples=1000): data = [] for _ in range(num_samples): # Randomly generate temperature and duration temp = np.random.randint(50, 201) # Temperature between 50 and 200°C duration = np.random.randint(5, 120) # Duration between 5 and 120 minutes # Assign risk level and alert based on conditions if temp <= 150 and duration <= 30: risk_level = "Low" risk_score = np.random.uniform(0, 40) # Low risk alert = "Safe" elif 150 < temp <= 180 and 30 < duration <= 60: risk_level = "Moderate" risk_score = np.random.uniform(40, 70) # Moderate risk alert = "Risk" else: risk_level = "High" risk_score = np.random.uniform(70, 100) # High risk alert = "High Risk" # Add timestamp as current time timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S") # Append to data data.append([temp, duration, risk_level, risk_score, alert, timestamp]) # Create DataFrame df = pd.DataFrame(data, columns=["temperature", "duration", "risk_level", "risk_score", "alert", "timestamp"]) return df # Generate the updated dataset with adjusted conditions df_v2 = generate_enhanced_data_v2(1000) # Save to CSV df_v2.to_csv("enhanced_mantle_training.csv", index=False) print("Data generation complete! Dataset saved as 'enhanced_mantle_training.csv'.")