RF-DETR / app.py
SkalskiP's picture
Update app.py
b12837b verified
import os
from typing import TypeVar
from tqdm import tqdm
import gradio as gr
import numpy as np
import supervision as sv
from PIL import Image
from rfdetr import RFDETRNano, RFDETRSmall, RFDETRMedium, RFDETRBase, RFDETRLarge
from rfdetr.detr import RFDETR
from rfdetr.util.coco_classes import COCO_CLASSES
from utils.image import calculate_resolution_wh
from utils.video import create_directory, generate_unique_name
ImageType = TypeVar("ImageType", Image.Image, np.ndarray)
MARKDOWN = """
# RF-DETR 🔥
[`[code]`](https://github.com/roboflow/rf-detr)
[`[blog]`](https://blog.roboflow.com/rf-detr)
[`[notebook]`](https://colab.research.google.com/github/roboflow-ai/notebooks/blob/main/notebooks/how-to-finetune-rf-detr-on-detection-dataset.ipynb)
RF-DETR is a real-time, transformer-based object detection model architecture developed
by [Roboflow](https://roboflow.com/) and released under the Apache 2.0 license.
"""
IMAGE_PROCESSING_EXAMPLES = [
['https://media.roboflow.com/supervision/image-examples/people-walking.png', 0.3, 1024, "medium"],
['https://media.roboflow.com/supervision/image-examples/vehicles.png', 0.3, 1024, "medium"],
['https://media.roboflow.com/supervision/image-examples/motorbike.png', 0.3, 1024, "medium"],
['https://media.roboflow.com/notebooks/examples/dog-2.jpeg', 0.5, 512, "nano"],
['https://media.roboflow.com/notebooks/examples/dog-3.jpeg', 0.5, 512, "nano"],
['https://media.roboflow.com/supervision/image-examples/basketball-1.png', 0.5, 512, "nano"],
]
VIDEO_PROCESSING_EXAMPLES = [
["videos/people-walking.mp4", 0.3, 1024, "medium"],
["videos/vehicles.mp4", 0.3, 1024, "medium"],
]
COLOR = sv.ColorPalette.from_hex([
"#ffff00", "#ff9b00", "#ff8080", "#ff66b2", "#ff66ff", "#b266ff",
"#9999ff", "#3399ff", "#66ffff", "#33ff99", "#66ff66", "#99ff00"
])
MAX_VIDEO_LENGTH_SECONDS = 5
VIDEO_SCALE_FACTOR = 0.5
VIDEO_TARGET_DIRECTORY = "tmp"
create_directory(directory_path=VIDEO_TARGET_DIRECTORY)
def detect_and_annotate(
model: RFDETR,
image: ImageType,
confidence: float,
) -> ImageType:
detections = model.predict(image, threshold=confidence)
resolution_wh = calculate_resolution_wh(image)
text_scale = sv.calculate_optimal_text_scale(resolution_wh=resolution_wh) - 0.2
thickness = sv.calculate_optimal_line_thickness(resolution_wh=resolution_wh)
bbox_annotator = sv.BoxAnnotator(color=COLOR, thickness=thickness)
label_annotator = sv.LabelAnnotator(
color=COLOR,
text_color=sv.Color.BLACK,
text_scale=text_scale
)
labels = [
f"{COCO_CLASSES[class_id]} {confidence:.2f}"
for class_id, confidence
in zip(detections.class_id, detections.confidence)
]
annotated_image = image.copy()
annotated_image = bbox_annotator.annotate(annotated_image, detections)
annotated_image = label_annotator.annotate(annotated_image, detections, labels)
return annotated_image
def load_model(resolution: int, checkpoint: str) -> RFDETR:
if checkpoint == "nano":
return RFDETRNano(resolution=resolution)
if checkpoint == "small":
return RFDETRSmall(resolution=resolution)
if checkpoint == "medium":
return RFDETRMedium(resolution=resolution)
if checkpoint == "base":
return RFDETRBase(resolution=resolution)
elif checkpoint == "large":
return RFDETRLarge(resolution=resolution)
raise TypeError("Checkpoint must be a base or large.")
def adjust_resolution(checkpoint: str, resolution: int) -> int:
if checkpoint in {"nano", "small", "medium"}:
divisor = 32
elif checkpoint in {"base", "large"}:
divisor = 56
else:
raise ValueError(f"Unknown checkpoint: {checkpoint}")
remainder = resolution % divisor
if remainder == 0:
return resolution
lower = resolution - remainder
upper = lower + divisor
if resolution - lower < upper - resolution:
return lower
else:
return upper
def image_processing_inference(
input_image: Image.Image,
confidence: float,
resolution: int,
checkpoint: str
):
resolution = adjust_resolution(checkpoint=checkpoint, resolution=resolution)
model = load_model(resolution=resolution, checkpoint=checkpoint)
return detect_and_annotate(model=model, image=input_image, confidence=confidence)
def video_processing_inference(
input_video: str,
confidence: float,
resolution: int,
checkpoint: str,
):
resolution = adjust_resolution(checkpoint=checkpoint, resolution=resolution)
model = load_model(resolution=resolution, checkpoint=checkpoint)
name = generate_unique_name()
output_video = os.path.join(VIDEO_TARGET_DIRECTORY, f"{name}.mp4")
video_info = sv.VideoInfo.from_video_path(input_video)
video_info.width = int(video_info.width * VIDEO_SCALE_FACTOR)
video_info.height = int(video_info.height * VIDEO_SCALE_FACTOR)
total = min(video_info.total_frames, video_info.fps * MAX_VIDEO_LENGTH_SECONDS)
frames_generator = sv.get_video_frames_generator(input_video, end=total)
with sv.VideoSink(output_video, video_info=video_info) as sink:
for frame in tqdm(frames_generator, total=total):
annotated_frame = detect_and_annotate(
model=model,
image=frame,
confidence=confidence,
)
annotated_frame = sv.scale_image(annotated_frame, VIDEO_SCALE_FACTOR)
sink.write_frame(annotated_frame)
return output_video
with gr.Blocks() as demo:
gr.Markdown(MARKDOWN)
with gr.Tab("Image"):
with gr.Row():
image_processing_input_image = gr.Image(
label="Upload image",
image_mode='RGB',
type='pil',
height=600
)
image_processing_output_image = gr.Image(
label="Output image",
image_mode='RGB',
type='pil',
height=600
)
with gr.Row():
with gr.Column():
image_processing_confidence_slider = gr.Slider(
label="Confidence",
minimum=0.0,
maximum=1.0,
step=0.05,
value=0.5,
)
image_processing_resolution_slider = gr.Slider(
label="Inference resolution",
minimum=224,
maximum=2240,
step=1,
value=896,
)
image_processing_checkpoint_dropdown = gr.Dropdown(
label="Checkpoint",
choices=["nano", "small", "medium"],
value="medium"
)
with gr.Column():
image_processing_submit_button = gr.Button("Submit", value="primary")
gr.Examples(
fn=image_processing_inference,
examples=IMAGE_PROCESSING_EXAMPLES,
inputs=[
image_processing_input_image,
image_processing_confidence_slider,
image_processing_resolution_slider,
image_processing_checkpoint_dropdown
],
outputs=image_processing_output_image,
)
image_processing_submit_button.click(
image_processing_inference,
inputs=[
image_processing_input_image,
image_processing_confidence_slider,
image_processing_resolution_slider,
image_processing_checkpoint_dropdown
],
outputs=image_processing_output_image,
)
with gr.Tab("Video"):
with gr.Row():
video_processing_input_video = gr.Video(
label='Upload video',
height=600
)
video_processing_output_video = gr.Video(
label='Output video',
height=600
)
with gr.Row():
with gr.Column():
video_processing_confidence_slider = gr.Slider(
label="Confidence",
minimum=0.0,
maximum=1.0,
step=0.05,
value=0.5,
)
video_processing_resolution_slider = gr.Slider(
label="Inference resolution",
minimum=560,
maximum=1120,
step=56,
value=728,
)
video_processing_checkpoint_dropdown = gr.Dropdown(
label="Checkpoint",
choices=["nano", "small", "medium"],
value="medium"
)
with gr.Column():
video_processing_submit_button = gr.Button("Submit", value="primary")
gr.Examples(
fn=video_processing_inference,
examples=VIDEO_PROCESSING_EXAMPLES,
inputs=[
video_processing_input_video,
video_processing_confidence_slider,
video_processing_resolution_slider,
video_processing_checkpoint_dropdown
],
outputs=video_processing_output_video
)
video_processing_submit_button.click(
video_processing_inference,
inputs=[
video_processing_input_video,
video_processing_confidence_slider,
video_processing_resolution_slider,
video_processing_checkpoint_dropdown
],
outputs=video_processing_output_video
)
demo.launch(debug=False, show_error=True)