File size: 4,466 Bytes
4349125
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
# %%
import gradio as gr
from sklearn.ensemble import RandomForestRegressor
import numpy as np
import pandas as pd
import pickle
# Define model filename
model_filename = "random_forest_regression_custom_feature.pkl"

try:
    # Try to load the model
    with open(model_filename, 'rb') as f:
        model_data = pickle.load(f)
        if isinstance(model_data, dict) and 'model' in model_data:
            random_forest_model = model_data['model']
except Exception as e:
    print("Error")
    exit(1)

# Load and prepare BFS data
df_bfs_data = pd.read_csv('bfs_municipality_and_tax_data.csv', sep=',', encoding='utf-8')
df_bfs_data['tax_income'] = df_bfs_data['tax_income'].str.replace("'", "").astype(float)
df_bfs_data['proximity_to_public_transportation'] = 500  # Default value in meters


# %%
locations = {
    "Zürich": 261,
    "Kloten": 62,
    "Uster": 198,
    "Illnau-Effretikon": 296,
    "Feuerthalen": 27,
    "Pfäffikon": 177,
    "Ottenbach": 11,
    "Dübendorf": 191,
    "Richterswil": 138,
    "Maur": 195,
    "Embrach": 56,
    "Bülach": 53,
    "Winterthur": 230,
    "Oetwil am See": 157,
    "Russikon": 178,
    "Obfelden": 10,
    "Wald (ZH)": 120,
    "Niederweningen": 91,
    "Dällikon": 84,
    "Buchs (ZH)": 83,
    "Rüti (ZH)": 118,
    "Hittnau": 173,
    "Bassersdorf": 52,
    "Glattfelden": 58,
    "Opfikon": 66,
    "Hinwil": 117,
    "Regensberg": 95,
    "Langnau am Albis": 136,
    "Dietikon": 243,
    "Erlenbach (ZH)": 151,
    "Kappel am Albis": 6,
    "Stäfa": 158,
    "Zell (ZH)": 231,
    "Turbenthal": 228,
    "Oberglatt": 92,
    "Winkel": 72,
    "Volketswil": 199,
    "Kilchberg (ZH)": 135,
    "Wetzikon (ZH)": 121,
    "Zumikon": 160,
    "Weisslingen": 180,
    "Elsau": 219,
    "Hettlingen": 221,
    "Rüschlikon": 139,
    "Stallikon": 13,
    "Dielsdorf": 86,
    "Wallisellen": 69,
    "Dietlikon": 54,
    "Meilen": 156,
    "Wangen-Brüttisellen": 200,
    "Flaach": 28,
    "Regensdorf": 96,
    "Niederhasli": 90,
    "Bauma": 297,
    "Aesch (ZH)": 241,
    "Schlieren": 247,
    "Dürnten": 113,
    "Unterengstringen": 249,
    "Gossau (ZH)": 115,
    "Oberengstringen": 245,
    "Schleinikon": 98,
    "Aeugst am Albis": 1,
    "Rheinau": 38,
    "Höri": 60,
    "Rickenbach (ZH)": 225,
    "Rafz": 67,
    "Adliswil": 131,
    "Zollikon": 161,
    "Urdorf": 250,
    "Hombrechtikon": 153,
    "Birmensdorf (ZH)": 242,
    "Fehraltorf": 172,
    "Weiach": 102,
    "Männedorf": 155,
    "Küsnacht (ZH)": 154,
    "Hausen am Albis": 4,
    "Hochfelden": 59,
    "Fällanden": 193,
    "Greifensee": 194,
    "Mönchaltorf": 196,
    "Dägerlen": 214,
    "Thalheim an der Thur": 39,
    "Uetikon am See": 159,
    "Seuzach": 227,
    "Uitikon": 248,
    "Affoltern am Albis": 2,
    "Geroldswil": 244,
    "Niederglatt": 89,
    "Thalwil": 141,
    "Rorbas": 68,
    "Pfungen": 224,
    "Weiningen (ZH)": 251,
    "Bubikon": 112,
    "Neftenbach": 223,
    "Mettmenstetten": 9,
    "Otelfingen": 94,
    "Flurlingen": 29,
    "Stadel": 100,
    "Grüningen": 116,
    "Henggart": 31,
    "Dachsen": 25,
    "Bonstetten": 3,
    "Bachenbülach": 51,
    "Horgen": 295
}
def predict_apartment(rooms, area, proximity, town):
    bfs_number = locations[town]
    df = df_bfs_data[df_bfs_data['bfs_number']==bfs_number].copy()
    df.reset_index(inplace=True)
    df.loc[0, 'rooms'] = rooms
    df.loc[0, 'area'] = area
    df.loc[0, 'proximity_to_public_transportation'] = proximity  # Use user input instead of default
    
    if len(df) != 1:
        return -1
        
    features = ['rooms', 'area', 'pop', 'pop_dens', 'frg_pct', 'emp', 'tax_income', 'proximity_to_public_transportation']
    X = df[features].values
    prediction = random_forest_model.predict(X)
    return np.round(prediction[0], 0)

# Create the Gradio interface
iface = gr.Interface(
    fn=predict_apartment,
    inputs=[
        gr.Number(label="Number of Rooms"),
        gr.Number(label="Area"),
        gr.Slider(minimum=0, maximum=2000, value=500, step=50, 
                 label="Distance to Public Transportation (meters)"),
        gr.Dropdown(choices=locations.keys(), label="Town", type="value")
    ],
    outputs=[gr.Number(label="Predicted Price (CHF)")],
    examples=[
        [5.5, 110, 300, "Bülach"], 
        [3, 90, 800, "Bassersdorf"]
    ],
    description="Predict apartment prices in Zürich based on rooms, area, proximity to public transportation, and location."
)
iface.launch()