Spaces:
Running
Running
File size: 14,699 Bytes
86b3815 f221fe7 86b3815 2e1c918 59cd2f7 4512bad 565c016 824eafb 86b3815 b6551db 86b3815 565c016 6a13fe4 565c016 86b3815 b6551db 86b3815 f672a9e 86b3815 3087f19 105d6cf 3087f19 86b3815 105d6cf 86b3815 c652474 4590d7b 86b3815 4590d7b 86b3815 4590d7b 86b3815 4590d7b 86b3815 4590d7b 9b6027a 0178220 c652474 947b382 0178220 c652474 0178220 947b382 0178220 947b382 c652474 0178220 c652474 947b382 c652474 9b6027a c652474 0178220 c652474 9b6027a c652474 947b382 c652474 947b382 0178220 947b382 0178220 947b382 0178220 9b6027a 0178220 c652474 0178220 947b382 0178220 947b382 0178220 947b382 c652474 4590d7b 0178220 4590d7b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 |
import requests
check_ipinfo = requests.get("https://ipinfo.io").json()['country']
print("Run-Location-As: ",check_ipinfo)
import gradio as gr
import ollama
# List of available models for selection.
# IMPORTANT: These names must correspond to models that have been either
# Model from run.sh
AVAILABLE_MODELS = [
'hf.co/bartowski/Qwen_Qwen3-4B-Instruct-2507-GGUF:Q4_K_M',
#'hf.co/bartowski/Qwen_Qwen3-4B-Thinking-2507-GGUF:Q4_K_M',
'smollm2:360m-instruct-q5_K_M',
'hf.co/bartowski/Llama-3.2-3B-Instruct-GGUF:Q4_K_M', # OK speed with CPU
#'gemma3n:e2b-it-q4_K_M',
'granite3.3:2b',
'hf.co/bartowski/tencent_Hunyuan-4B-Instruct-GGUF:Q4_K_M'
]
#---fail to run
#'hf.co/ggml-org/SmolLM3-3B-GGUF:Q4_K_M',
#'hf.co/bartowski/nvidia_OpenReasoning-Nemotron-1.5B-GGUF:Q5_K_M',
# Default System Prompt
DEFAULT_SYSTEM_PROMPT = """Answer everything in simple, smart, relevant and accurate style. No chatty! Besides, pls:
1. 如果查詢是以中文輸入,使用標準繁體中文回答,符合官方文書規範
2. 要提供引用規則依据
3. 如果查詢是以英文輸入,使用英文回答"""
# --- Gradio Interface ---
with gr.Blocks(theme=gr.themes.Default(primary_hue="blue", secondary_hue="neutral")) as demo:
gr.Markdown(f"## Small Language Model (SLM) run with CPU") # Changed title to be more generic
gr.Markdown(f"(Run-Location-As: `{check_ipinfo}`)")
gr.Markdown("Chat with the model, customize its behavior with a system prompt, and toggle streaming output.")
# Model Selection
with gr.Row():
selected_model = gr.Radio(
choices=AVAILABLE_MODELS,
value=AVAILABLE_MODELS[0], # Default to the first model in the list
label="Select Model",
info="Choose the LLM model to chat with.",
interactive=True
)
chatbot = gr.Chatbot(
label="Conversation",
height=400,
type='messages',
layout="bubble"
)
with gr.Row():
msg = gr.Textbox(
show_label=False,
placeholder="Type your message here and press Enter...",
lines=1,
scale=4,
container=False
)
with gr.Accordion("Advanced Options", open=False):
with gr.Row():
stream_checkbox = gr.Checkbox(
label="Stream Output",
value=True,
info="Enable to see the response generate in real-time."
)
use_custom_prompt_checkbox = gr.Checkbox(
label="Use Custom System Prompt",
value=False,
info="Check this box to provide your own system prompt below."
)
system_prompt_textbox = gr.Textbox(
label="System Prompt",
value=DEFAULT_SYSTEM_PROMPT,
lines=3,
placeholder="Enter a system prompt to guide the model's behavior...",
interactive=False
)
# Function to toggle the interactivity of the system prompt textbox
def toggle_system_prompt(use_custom):
return gr.update(interactive=use_custom)
use_custom_prompt_checkbox.change(
fn=toggle_system_prompt,
inputs=use_custom_prompt_checkbox,
outputs=system_prompt_textbox,
queue=False
)
# --- Core Chat Logic ---
# This function is the heart of the application.
def respond(history, system_prompt, stream_output, current_selected_model): # Added current_selected_model
"""
This is the single function that handles the entire chat process.
It takes the history, prepends the system prompt, calls the Ollama API,
and streams the response back to the chatbot.
"""
#Disable Qwen3 thinking
if "Qwen3".lower() in current_selected_model:
system_prompt = system_prompt+" /no_think"
# The 'history' variable from Gradio contains the entire conversation.
# We prepend the system prompt to this history to form the final payload.
messages = [{"role": "system", "content": system_prompt}] + history
# Add a placeholder for the assistant's response to the UI history.
# This creates the space where the streamed response will be displayed.
history.append({"role": "assistant", "content": ""})
# Stream the response from the Ollama API using the currently selected model
response_stream = ollama.chat(
model=current_selected_model, # Use the dynamically selected model
messages=messages,
stream=True
)
# Iterate through the stream, updating the placeholder with each new chunk.
for chunk in response_stream:
if chunk['message']['content']:
history[-1]['content'] += chunk['message']['content']
# Yield the updated history to the chatbot for a real-time effect.
yield history
# This function handles the user's submission.
def user_submit(history, user_message):
"""
Adds the user's message to the chat history and clears the input box.
This prepares the state for the main 'respond' function.
"""
return history + [{"role": "user", "content": user_message}], ""
# Gradio Event Wiring
msg.submit(
user_submit,
inputs=[chatbot, msg],
outputs=[chatbot, msg],
queue=False
).then(
respond,
inputs=[chatbot, system_prompt_textbox, stream_checkbox, selected_model], # Pass selected_model here
outputs=[chatbot]
)
# Launch the Gradio interface
demo.launch(server_name="0.0.0.0", server_port=7860)
"""
#---------------------------------------------------------------
# v20250625, OK run with CPU, Gemma 3 4b it qat gguf, history support.
import gradio as gr
import ollama
# The model name must exactly match what was pulled from Hugging Face
MODEL_NAME = 'hf.co/unsloth/gemma-3-4b-it-qat-GGUF:Q4_K_M'
# Default System Prompt
DEFAULT_SYSTEM_PROMPT = "You must response in zh-TW. Answer everything in simple, smart, relevant and accurate style. No chatty!"
# --- Gradio Interface ---
with gr.Blocks(theme=gr.themes.Default(primary_hue="blue", secondary_hue="neutral")) as demo:
gr.Markdown(f"## LLM GGUF Chat with `{MODEL_NAME}`")
gr.Markdown("Chat with the model, customize its behavior with a system prompt, and toggle streaming output.")
# Use the modern 'messages' type for the Chatbot component
chatbot = gr.Chatbot(
label="Conversation",
height=500,
type='messages',
layout="bubble"
)
with gr.Row():
msg = gr.Textbox(
show_label=False,
placeholder="Type your message here and press Enter...",
lines=1,
scale=4,
container=False
)
with gr.Accordion("Advanced Options", open=False):
with gr.Row():
stream_checkbox = gr.Checkbox(
label="Stream Output",
value=True,
info="Enable to see the response generate in real-time."
)
use_custom_prompt_checkbox = gr.Checkbox(
label="Use Custom System Prompt",
value=False,
info="Check this box to provide your own system prompt below."
)
system_prompt_textbox = gr.Textbox(
label="System Prompt",
value=DEFAULT_SYSTEM_PROMPT,
lines=3,
placeholder="Enter a system prompt to guide the model's behavior...",
interactive=False
)
# Function to toggle the interactivity of the system prompt textbox
def toggle_system_prompt(use_custom):
return gr.update(interactive=use_custom)
use_custom_prompt_checkbox.change(
fn=toggle_system_prompt,
inputs=use_custom_prompt_checkbox,
outputs=system_prompt_textbox,
queue=False
)
# --- Core Chat Logic ---
# This function is the heart of the application.
def respond(history, system_prompt, stream_output):
#This is the single function that handles the entire chat process.
#It takes the history, prepends the system prompt, calls the Ollama API,
#and streams the response back to the chatbot.
# --- FINAL FIX: Construct the API payload correctly ---
# The 'history' variable from Gradio contains the entire conversation.
# We prepend the system prompt to this history to form the final payload.
messages = [{"role": "system", "content": system_prompt}] + history
# Add a placeholder for the assistant's response to the UI history.
# This creates the space where the streamed response will be displayed.
history.append({"role": "assistant", "content": ""})
# Stream the response from the Ollama API
response_stream = ollama.chat(
model=MODEL_NAME,
messages=messages,
stream=True
)
# Iterate through the stream, updating the placeholder with each new chunk.
for chunk in response_stream:
if chunk['message']['content']:
history[-1]['content'] += chunk['message']['content']
# Yield the updated history to the chatbot for a real-time effect.
yield history
# This function handles the user's submission.
def user_submit(history, user_message):
#Adds the user's message to the chat history and clears the input box.
#This prepares the state for the main 'respond' function.
return history + [{"role": "user", "content": user_message}], ""
# Gradio Event Wiring
msg.submit(
user_submit,
inputs=[chatbot, msg],
outputs=[chatbot, msg],
queue=False
).then(
respond,
inputs=[chatbot, system_prompt_textbox, stream_checkbox],
outputs=[chatbot]
)
# Launch the Gradio interface
demo.launch(server_name="0.0.0.0", server_port=7860)
#---------------------------------------------------------------
"""
"""
#---------------------------------------------------------------
# Backup, OK: history, user sys prompt, cpu.:
#---------------------------------------------------------------
import gradio as gr
import ollama
# The model name must exactly match what was pulled from Hugging Face
MODEL_NAME = 'hf.co/unsloth/gemma-3-4b-it-qat-GGUF:Q4_K_M'
# Default System Prompt
DEFAULT_SYSTEM_PROMPT = "You must response in zh-TW. Answer everything in simple, smart, relevant and accurate style. No chatty!"
# --- Gradio Interface ---
with gr.Blocks(theme=gr.themes.Default(primary_hue="blue", secondary_hue="neutral")) as demo:
gr.Markdown(f"## LLM GGUF Chat with `{MODEL_NAME}`")
gr.Markdown("Chat with the model, customize its behavior with a system prompt, and toggle streaming output.")
# Use the modern 'messages' type for the Chatbot component
chatbot = gr.Chatbot(
label="Conversation",
height=500,
type='messages',
layout="bubble"
)
with gr.Row():
msg = gr.Textbox(
show_label=False,
placeholder="Type your message here and press Enter...",
lines=1,
scale=4,
container=False
)
with gr.Accordion("Advanced Options", open=False):
with gr.Row():
stream_checkbox = gr.Checkbox(
label="Stream Output",
value=True,
info="Enable to see the response generate in real-time."
)
use_custom_prompt_checkbox = gr.Checkbox(
label="Use Custom System Prompt",
value=False,
info="Check this box to provide your own system prompt below."
)
system_prompt_textbox = gr.Textbox(
label="System Prompt",
value=DEFAULT_SYSTEM_PROMPT,
lines=3,
placeholder="Enter a system prompt to guide the model's behavior...",
interactive=False
)
# Function to toggle the interactivity of the system prompt textbox
def toggle_system_prompt(use_custom):
return gr.update(interactive=use_custom)
use_custom_prompt_checkbox.change(
fn=toggle_system_prompt,
inputs=use_custom_prompt_checkbox,
outputs=system_prompt_textbox,
queue=False
)
# --- Core Chat Logic ---
# This function is the heart of the application.
def respond(history, system_prompt, stream_output):
#This is the single function that handles the entire chat process.
#It takes the history, prepends the system prompt, calls the Ollama API,
#and streams the response back to the chatbot.
# --- FINAL FIX: Construct the API payload correctly ---
# The 'history' variable from Gradio contains the entire conversation.
# We prepend the system prompt to this history to form the final payload.
messages = [{"role": "system", "content": system_prompt}] + history
# Add a placeholder for the assistant's response to the UI history.
# This creates the space where the streamed response will be displayed.
history.append({"role": "assistant", "content": ""})
# Stream the response from the Ollama API
response_stream = ollama.chat(
model=MODEL_NAME,
messages=messages,
stream=True
)
# Iterate through the stream, updating the placeholder with each new chunk.
for chunk in response_stream:
if chunk['message']['content']:
history[-1]['content'] += chunk['message']['content']
# Yield the updated history to the chatbot for a real-time effect.
yield history
# This function handles the user's submission.
def user_submit(history, user_message):
#Adds the user's message to the chat history and clears the input box.
#This prepares the state for the main 'respond' function.
return history + [{"role": "user", "content": user_message}], ""
# Gradio Event Wiring
msg.submit(
user_submit,
inputs=[chatbot, msg],
outputs=[chatbot, msg],
queue=False
).then(
respond,
inputs=[chatbot, system_prompt_textbox, stream_checkbox],
outputs=[chatbot]
)
# Launch the Gradio interface
demo.launch(server_name="0.0.0.0", server_port=7860)
""" |