Spaces:
Running
on
Zero
Running
on
Zero
File size: 2,429 Bytes
0d1c12c 42cd50b 0d1c12c 42cd50b 0d1c12c 42cd50b 0d1c12c 42cd50b 0d1c12c 42cd50b 0d1c12c 42cd50b 0d1c12c 42cd50b 0d1c12c 42cd50b 0d1c12c 42cd50b 0d1c12c 42cd50b 0d1c12c 42cd50b 0d1c12c 42cd50b 0d1c12c 42cd50b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 |
import gradio as gr
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
from struct_caption import StructCaptioner
from fusion_caption import FusionCaptioner
# Khởi tạo mô hình
struct_captioner = StructCaptioner("Skywork/SkyCaptioner-V1")
fusion_captioner = FusionCaptioner("Qwen/Qwen3-8B")
# Tải mô hình dịch tiếng Việt
translation_model = AutoModelForSeq2SeqLM.from_pretrained("VietAI/envit5-translation")
translation_tokenizer = AutoTokenizer.from_pretrained("VietAI/envit5-translation")
def translate_to_vietnamese(text):
inputs = translation_tokenizer(f"en: {text}", return_tensors="pt", padding=True)
outputs = translation_model.generate(**inputs, max_length=512)
return translation_tokenizer.decode(outputs[0], skip_special_tokens=True)
# Giao diện người dùng Gradio
with gr.Blocks() as demo:
gr.Markdown("<h1 style='text-align: center;'>SkyCaptioner-V1</h1>")
with gr.Row():
with gr.Column(scale=0.5):
video_input = gr.Video(label="Upload Video", interactive=True, format="mp4")
btn_struct = gr.Button("Generate Struct Caption")
with gr.Column():
struct_caption_output = gr.Code(label="Struct Caption", language="json", lines=25, interactive=False)
with gr.Row():
with gr.Column(scale=0.5):
task_input = gr.Radio(label="Task Type", choices=["t2v", "i2v"], value="t2v", interactive=True)
btn_fusion = gr.Button("Generate Fusion Caption")
with gr.Column():
fusion_caption_output = gr.Textbox(label="Fusion Caption", value="", interactive=False)
@gr.Interface(fn=generate_struct_caption, inputs=video_input, outputs=struct_caption_output)
def generate_struct_caption(video):
struct_caption = struct_captioner(video)
return struct_caption
@gr.Interface(fn=generate_fusion_caption, inputs=[struct_caption_output, task_input], outputs=fusion_caption_output)
def generate_fusion_caption(struct_caption_str, task):
fusion_caption = fusion_captioner(struct_caption_str, task)
if task == "t2v":
return fusion_caption
else:
return translate_to_vietnamese(fusion_caption)
gr.Examples(
examples=[["./examples/1.mp4"], ["./examples/2.mp4"], ["./examples/3.mp4"], ["./examples/4.mp4"]],
inputs=video_input,
label="Example Videos"
)
demo.launch()
|